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Long-Baseline Neutrino Facility

A facility to enable a world-leading experimental program in
neutrino physics, nucleon decay, and astroparticle physics.
LBNF comprises:

Underground and surface facilities at the Sanford Underground
Research Facility capable of hosting a modular LAr TPC of
fiducial mass = 40 kt (~70 kt liquid mass)

Cryostats, refrigeration and purification systems to operate the
detectors

A high-power, wide-band, tunable, v beam at Fermilab

Underground and surface facilities to host a highly-capable near
detector at Fermilab ... and potentially other non-oscillation
neutrino experiments
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LBNF/DUNE

 LBNF is a DOE/Fermilab hosted project
with international participation.

* Major partners include CERN and SURF.

 DUNE Collaboration will build and
operate the experiment™ in LBNF.
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Fermilab Main Injector Capabilities

Routine operation >400 kW since March
Peak Power (Hour) to NuMI 481.3 kW
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LBNF Beam Operating Parameters:
Main Injector Complex with PIP-Il and PIP-Ill upgrades

Summary of key Beamline design parameters for <1.2 MW and <2.4 MW operation

Protons per Beam Power
Parameter cycle Cycle Time (sec) (MW)
< 1.2 MW Operation - Current Maximum Value for LBNF
Proton Beam Energy (GeV):
60 7.5E+13 0.7 1.03
80 7.5E+13 0.9 1.07
120 7.5E+13 1.2 1.20
< 2.4 MW Operation - Planned Maximum Value for LBNF 2nd Phase
Proton Beam Energy (GeV):
60 1.5E+14 0.7 2.06
80 1.5E+14 0.9 2.14
120 1.5E+14 1.2 2.40

PIP-11

PIP-111

Pulse duration: 10 us
Beam size at target:
tunable 1.0-4.0 mm
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Primary Beam Enclosure

Apex of Embankment ~ 60’

MI-10 Point of Extraction —
Near Detector Absorber Hall Target Hall Complex
Service Building Service Building (LBNF-20)
(LBNF-40) (LBNF-30)
Absorber Hall
and Muon Alcove

Primary Beam
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(LBNF-5)
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Primary Beam and Lattice Functions

 The LBNF Primary Beam will transport 60 - 120 GeV protons from MI-10 to the
LBNF target to create a neutrino beam. The beam lattice points to 79
conventional magnets (25 dipoles, 21 quadrupoles, 23 correctors, 6 kickers, 3

Lambertsons and 1 C magnet).
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LBNF kicker magnets are further upstream and not shown in this view.

Beam size at target
tunable between
1.0-4.0 mm
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Neutrino Beam Configuration

Work cell

Water cooled
panels

Space reserved for more
optimized horn system

multi-ply geosynthetic barriers, separated by a drainage layer
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Target Shield Pile

steel shielding surrounds the

beamline components (baffle,
target, Horn 1, Horn 2, and the
decay pipe upstream window)

installed in the target chase

Water-cooled chase panels

~40% of the beam energy deposited in the target chase
Cooling: combination of forced air & water-cooled panels
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Target and Focusing System — Reference Design
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NuMlI-style target: 47 graphite segments,
each 2 cm long and spaced 0.2 mm apart,
“T.... for a total target core length of 95 cm, 2 A,.
\_ Viable for 1.2 MW beam power. )

/Horns: identical to NuMI, but operated at 230 kA current and subjected to a \
maximum beam power of 1.2 MW
= new Horn Power Supply necessary to reduce pulse width to 0.8 ms

Target Quter Conductor
Inner Conductor

o
1

=
m’; Target starting 45 cm
B’?‘ upstream of MCZERO

‘ 3.36m
\ 1.2 MW Hom # 1 /
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Initial Modifications for 1.2 MW T e

Graphite segment
\ Proton
__”‘_UBea m

* Wider target material (still graphite): 7.4-—510.0 mm )
* Dual cooling pipes — greater surface area

* Slightly larger outer vessel diameter: 30-—>36 mm
(Move target upstream 10 cm from horn)
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Upstream Decay Pipe Window

|

He cooling
supply

temporary
blind

thin replaceable window

1.25 mm beryllium or beryllium-aluminum alloy

foil welded to a heavier aluminum ring

heavier ring includes a seal groove for an all

metal seal

viable design for 60-120 GeV/c protons, 1.03-

1.20 MW beam power
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Decay Pipe

194 m long, 4 m inside diameter

Helium filled

double-wall decay pipe, 20 cm annular gap

5.6 m thick concrete shielding

It collects ~30% of the beam power, removed by an air cooling system
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Target Chase & Decay Pipe Cooling

Clean cooling air Vent to atmosphere €5
Target Pile supply: 950 scfm

A—>1 air handler,
35,000 scfm

Water-proof barrier
(Geomembrane)

* Helium purge and fill connections
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NOTE: The target pile air cooling system
and the decay pipe air cooling system
are two separate systems.

Combination of forced air & water cooling panels for Target Shield Pile
Air-cooled Decay pipe

» 2 separate air systems for target Chase and Decay Pipe

Possible need to replace air in the target chase with N2 or He under study
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Absorber building

ABSORBER SERVICE

Absorber /—ABSORBER HALL
goes here

MUON ALCOVE

MUON KERN

DECAY PIPE STEEL SHIELDING

BEAMLINE
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Beam Absorber Configuration

Spoiler Sculpted (9)

Beam

Mask (5) Solid Al (4) Steel (4)

= ~30% of the beam energy deposited in the Absorber

= Core: replaceable water-cooled blocks, each 1 foot thick
= Qutside of the core is forced-air cooled steel and concrete shielding

= Viable for 60-120 GeV/c protons, 2.06-2.4 MW beam power, including
both steady-state operations and accident conditions
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Remote Handling

* Remote Handling systems are integrated into the infrastructure

of the Target complex, they must be designed to be sufficient for
2.4-MW beam power

« Shield doors (will incorporate air seals)

- Lifting fixtures, vision system

« Morgue/Maintenance areas, Rail System
- Hot Storage Rack and Work Cell

ransfer cart

= Absorber Hall components and shielding allow future Replaceable
core DIOCKS
replacement o

- Low probability of complete failure, final design and construction
of remote handling equipment not included in the LBNF project

« No Work Cell needed in Absorber Hall
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Beam Simulation

e Extensive MARS simulations for energy deposition and radiological
studies as well as for Beamline configuration optimization studies.
 ~40% of the beam power is deposited to the Target Hall
Complex, 30% to the Decay Pipe region and 30% to the
Absorber Hall complex.
 GEANT simulations for Beamline configuration optimization
studies, neutrino fluxes, sensitivity and systematic studies.

«m| Target Complex (mSv/hr)

| < 100 mrem/hr

-800-

| | I |
-1.00x103 0 1.00x103 2.00x103
1 3e+12

10]3 10] ! 10 107 10s 103 10] 10_I l()_3

r‘d

0” 1o 1
Prompt dosc imSvihr)

19 14 Aug 2015 Jim Strait | LBNF Neutrino Beam LBNF



What is being designed for 2.4 MW

* Designed for 2.4 MW, since upgrading later would be prohibitively
expensive and inconsistent with ALARA:

— Size of enclosures (primary proton beamline, target chase, target hall,
decay pipe, absorber hall)

— Radiological shielding of enclosures (except from the roof of the target
hall, that can be easily upgraded for 2.4 MW when needed)

— Primary Beamline components

— The water cooled target chase cooling panels

— The decay pipe and its cooling and the decay pipe downstream window
— beam absorber

— remote handling equipment

— radioactive water system piping

— horn support structures are designed to last for the lifetime of the
Facility
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Neutrino Flux — Reference Configuration
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Studies for an optimal beam design - Physics

Proton energy choice in the range 60-120 GeV (some programmatic
consequences).

Horns
— Shape/size
— current (

Target
— Size/shape/position with respect to Horn 1
— Material(s) (higher longevity can increase up time - ongoing R&D)

Studied Decay Pipe length and diameter. Current length 194 m
(studied 170 m - 250 m). Current diameter 4 m (studied 2-6 m).
Recently fixed at 194 m long x 4 m diameter.
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Optimizing the focusing system for greater physics reach

Genetic algorithm, inspired by work done by LBNO Collaboration
to optimize for CP Violation sensitivity
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Target chase allows for optimized focusing systems

Reference Design Target Chase indicating the positions of
the reference design horns (in red) and the optimized
horns (in blue)
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Neutrino Flux of best configurations compared with
Reference Design

80 GeV protons
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Enhanced: thinner and shorter cylindrical Be target, 25 cm upstream of 15t horn
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50 % CP Violation Sensitivity

9
” DUNE Sensitivity
[ Normal Hierarchy

% CDR Reference Design.

- Optimized Design
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Further work required on optimized target-horn system

* Engineering needed to determine feasibility of horn designs
selected by genetic algorithm

e Study effect of 2 -> 3 horn system

* Search phase-space of horn design more broadly, and consider
other optimization criteria, e.g. for v_appearance.

* Alternate target designs and materials
 Target and horn R&D towards 2.4 MW operation

|II

e Alternate ideas to “classical” horn focusing?

=> |deas from new collaborators are needed!
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Summary

* The Fermilab Main Injector is delivering the world’s highest
beam power for neutrinos ... 0.5 MW now, 0.7 MW next
year, 1.2 MW -> 2.4 MW with PIP-Il and eventually PIP-IlI

 The LBNF beamline design is well developed, based on
NuMI experience

— All systems designed for 1.2 MW

— All elements that cannot be replaced later are designed
for 2.4 MW

* Further optimization can have a big impact on the physics
reach of DUNE ... new ideas and new collaborators are
needed now to realize this potential.
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