Futures in Accelerator-Based Physics

From the Cathode Ray Tube to a Muon Collider

1897 Braun: Cathode ray tube (~ 20 keV,television sets).

- 1930 Cockcroft & Walton, Van de Graaff, Wideroe: Linear accelerators to ~ 1 MeV.
- 1930 Lawrence: Cyclotron = first circular accelerator, ~ 10 MeV.
- **1940** Kerst: Betatron = circular induction accelerator, ~ 10 MeV.
- 1945 McMillan, Veksler: Synchrotron = circular ring accelerator, ~ 1 GeV.
- 1950 Christofilos: Alternating gradient focusing, \Rightarrow synchrotrons to 10 GeV.
- 1955 Kerst: Proton colliding rings (first built as electron rings).
- 1956 Wigner: Liouville's theorem applies to particle beams.
- 1956 O'Neill: Ionization cooling for storage rings.
- 1960 Melissinos: Muon storage ring.
- 1962 Milburn: Laser-electron Compton backscattered photon beam.
- 1966 Budker: Electron cooling.
- 1968 Van der Meer: Stochastic cooling of antiproton rings.
- 1968-69 Tikhonin, Budker: Muon colliding rings with ionization cooling.

1993 Mikhailichenko, Zolotorev: Optical stochastic cooling. Kirk T. McDonald U. Ioannina, May 21, 2004

Nicholas Christofilos

Developed the concept of alternating gradient focusing (inverted pendulum stability) in 1950 while working as an elevator operator.

Later invented the induction linac.

Pioneered studies of electromagnetic pulses and aurorae producing by high altitude explosions of nuclear bombs.

Uni	ted States P	ater	1t	Office 2, Patented Feb.	736,79
	1		90		
FOCU55INC Nicholas Applicat	2,736,799 S SYSTEM FOR IONS AND ELL Christofilos (or Philos), Athens, (ioo March IO, 1950, Serial No. 14 8 Claims. (Cl. 250—27)	ECTRONS Greece 18,920	30 30	wards the orbit in the divergence section. Sin- ser proters at the distinct from the exhibitors the mean value of the converging and diver- long the converging section is greater the value of the forces along the diverging section aligned for the section of the mean va- blemating forces causes the particles in the statematic section of the section of the sec- tion of the section of the section of the sec- tion of the section of the section of the sec- tion of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sec	the force omes greate: rging force on the mea on. The mea on. The mea on. The mea on the second blue of these path to b and focusin principle the are
				Ps=0	(2
The present for ions and	invention relates to a new focus electrons and application thereof	sing system in particle	15	$P_{y} = -\epsilon \cdot y \cdot \sin \frac{2\pi z}{\lambda}$	(20
A major pr is the provisi	oblem in the design of particle a on of suitable means for focuss	ing the ac-		$P_s = \epsilon \cdot z \cdot \sin \frac{2\pi z}{\lambda}$ As it is obvious	(2
compensating	the mutual electrostatic repulsiv	e forces.	20	$\Delta_{\mathbf{y}} = \frac{\delta P_{\mathbf{x}}}{\delta \mathbf{x}} + \frac{\delta P_{\mathbf{y}}}{\delta \mathbf{y}} + \frac{\delta P_{\mathbf{x}}}{\delta \mathbf{x}} = 0$	
particles towa	rds a predetermined orbit from al	I directions		ey==- cz	(1
and the focussing forces must increase as the distance from said orbit increases. If we consider an orthogonal coordinate system, x, y, z, and suppore that the particle's orbit coincides with the			25	so that the Laplace equation is satisfied and production of such a field is possible. If we particle moving parallel to the x-axis and a z = ze, $y = 0$ the force everted on said particle	therefore t e consider e a distan e is
nents of the i	ocussing forces, then, in an idea	z, compo- l focussing		$P_{\epsilon} = \epsilon \cdot \epsilon \cdot \epsilon_{\epsilon} \sin \frac{2\pi x}{\lambda}$	(
system the eq	valuons of the P_2 , P_3 , P_4 would be $P_2 = 0$ $P_9 = -\epsilon_P y$	(1) (1 <i>a</i>)	30	As the force Ps varies periodically as the pa along the x-axis, said particle undergoes fo tions of frequency	rticle mov rced oscil
But simulta	Decusly the Laplace equation A	$\varphi = 0 must$	35	$f = \frac{\beta c}{\lambda}$	(
or 54051120 501	$\frac{\delta P_s}{\delta z} + \frac{\delta P_y}{\delta y} + \frac{\delta P_s}{\delta z} = 0$	(1c)		where βc the velocity of the particle. The result of these oscillations is that the from the orbit oscillates around the mean value into the equation	ihe distan ie ze accor
From the ober	ey=-ey	(12)	40	$t = t_0 \left(1 - \mu \sin \frac{2\pi x}{\lambda}\right)$	(
capable to ac determined or	celerate lons or electrons towar bit from all directions simulta	rds a pre-		where O<#<1	
herein is based	in a new principle, namely:	proposed	45	In the region where	
If, along a president of	electromagnetic field is produced	ectrons an by means		$\sin \frac{2\pi x}{\lambda}$	
art souther of	energized by high intensity curre	high volt- ent) exert-	50	is negative the mean value of the distance for is greater than zo while in the region where	m the orb
ng periodical	es directed normally to said orbit y, in direction and magnitude :	and vary- along said		$\sin \frac{2\pi z}{\lambda}$	
sidal, and increased orbit increased orbit increased orbit increased or a second or a second or a second orbit increased orbit of a second orbit orbit orbit orbit of a second orbit orbit orbit	casing in magnitude as the dist case, then the mean value of the tive (directed towards the orbit cussed towards the orbit from all g forces acting on the particles which is produced electrostatical r, increase as the distance from the	ance from focussing) and the directions. s resulting ly or elec- ne orbit in-	63 60	is positive the mean value of the distance is so that the mean value of the force in the fin greater than the mean value in the second it the result that the mean value of the force A is negative, focusing the particle towards from all directions. If the maximum value of the force is	less than z ist region, with in a lengt the x-axi
he orbit and	particles move at some finite dist in a direction substantially para	lel to the		Partectile	(7
ng forces due oscillations and	of the periodically varying excit to the field. The particles under d are subject to the alternately of	ing focus- igo forced	65	then the mean value P_m is $P_m = e \cdot e_m \cdot s_0$	(8
and diverging I duced force fie upon the orbit	orces from the field. The electr d, electromagnetic or electrostation and the path of the particles ex-	ically pro- c, imposed erts forces		ta = t $\frac{\mu}{2}$	(1
ially parallel	s within a plane whose normal i to the velocity vector of each o	f the par-	70	and	
wards the orb	it in a converging section and c	onvex to-		$\mu = \frac{\epsilon \lambda^3}{4\pi^2 \beta^2 l^2}$	(10

Tribute by A.C. Melissinos: http://puhep1.princeton.edu/~mcdonald/accel/christofilos.pdf

KIRK T. MCDONALD

U. IOANNINA, MAY 21, 2004

Adrian Melissinos

The University of Rochester Rochester 20, N.T.

ΜΕΛΙΣΣΙΝΟΥ

1960: First proposal for a muon storage ring. Later implemented for studies of g - 2 of the muon.

1997: Production of positrons in nonlinear light-by-light scattering (with KTM). "Sparking the Vacuum". Department of Physics

It is proposed to build a strong focusing ring to sontain μ -mesons in a given momentum band for several π -meson lifetimes and then eject them.

Orbit radius 1.9 m Mean radius 2.2 m Aperture width 7 cm Aperture height 4 cm Maximum field 13 Kg. Field index $n_1 - n_2 - n \simeq 15$ Betatron osc freq. $Q_r = 2.25$ $Q_z = 1.75$ Rotation frequency $\simeq 22$ Mc /sec Weight Fe 10 tons Cu 2 tons

Sectors: 4 each double Focusing order: 1/2F D 1/2F

At the Cosmotron, a fairly well focused w-beam of $10^7/\text{pulse}$ could be obtained for a $\Delta p/p \simeq 20\%$. Assuming that for such a beam the capture efficiency is 50%, the µ-meson beam becomes

 $2.2 \times 10^{\circ}/\text{pulse}$ with $\Delta p/p = 10\%$

At the AGS one could expect a fairly well focused beam of $\pi^{1}s$ 2 x 10⁸ so that under the same considerations the µ-mesons are 4.4 x 10⁵/pulse with $\Delta p/p = 10\%$

The cost is estimated to less than \$100,000. If all this does not seem too unreasonable I will proceed to calculate orbits.

Tribute by KTM: http://puhep1.princeton.edu/~mcdonald/adrianfest/adrianfesttrans.pdf

KIRK T. MCDONALD

The Sandal-Making Poet of Athens

"Take away the Glories and the Honors The granite palaces of this vain world And only give me the smile of Pain The tear of Joy and I will erect A thousand palaces in me in which to live." -Stavros Melissinos, Known among sandal-makers as "The Poet" (and among poets as "the Sandal-Maker").

89 Pondrossou Street in Monastiraki, Athens

Melissos of Samos

Student of Parmenides.

Admiral of Samian navy, defeated Pericles 441 BC. "Nor is anything empty. For what is empty is nothing. What is nothing cannot be."

"Accordingly, being was not generated, nor will it be destroyed;

So it always was and always will be."

Why Muons?

• A muon is a heavy electron.

 \Rightarrow Fundamental interest in the properties of the muon and of its decays.

• Muons live 2.2 μ s when at rest. \Rightarrow Muons of any energy live \approx 1,000 turns in a 2-T magnetic field.

 \Rightarrow Can use rings to accelerate, store and collide muons.

Why Now?

• $m_{\mu} = 205m_e$

 $\Rightarrow \mbox{Initial state radiation suppressed} \\ \mbox{in } \mu^+\mu^- \mbox{ collisions.} \end{aligned}$

 \Rightarrow Precision leptonic initial states up to 100 TeV.

• Muon decay, $\mu \rightarrow \nu_{\mu} e \overline{\nu}_{e}$, provides well-known fluxes of $\nu_{\mu}, \overline{\nu}_{e} \ (\overline{\nu}_{\mu}, \nu_{e})$ in equal amounts. \Rightarrow Neutrino factory.

What is a Muon Collider?

An accelerator complex in which

- Muons (both μ⁺ and μ⁻) are collected from pion decay following a pN interaction.
- Muon phase volume is reduced by 10⁶ by ionization cooling.
- The cooled muons are accelerated and then stored in a ring.
- $\mu^+\mu^-$ collisions are observed over the useful muon life of ≈ 1000 turns at any energy.
- Intense neutrino beams and spallation neutron beams are available as byproducts.

Fast Ionization Cooling of Muon Beams

- dE/dx loss cools both P_T and P_L .
- Multiple scattering heats P_T , straggling heats P_L .
- With low-Z absorber can have net cooling of P_T , but P_L is heated.

- A magnet + wedge absorber can exchange transverse and longitudinal phase space.
- Then cool transversely again....

An affordable implementation of fast ionization cooling is the major R&D challenge for a muon collider.

The Neutrino Factory and Muon Collider Collaboration:

http://www.cap.bnl.gov/mumu/mu_home_page.html Kirk T. McDonald U. Ioannina, May 21, 2004

A Neutrino Factory Based on a Muon Storage Ring

- Many of the neutrino oscillation solutions permit study of the couplings between 2, 3, and 4 neutrinos in accelerator based experiments.
- More neutrinos are needed!
- Present neutrino beams come from $\pi, K \to \mu \nu_{\mu}$ with small admixtures of $\overline{\nu}_{\mu}$ and ν_{e} from μ and $K \to 3\pi$ decays.

- Higher (per proton beam power) and better characterized neutrino fluxes are obtained from μ decay.
- Collect low-energy μ's from π decay, Cool the muon bunch, Accelerate the μ's to the desired energy,
 Store them in a ring while they

Store them in a ring while they decay via $\mu^- \rightarrow e^- \nu_\mu \overline{\nu}_e$.

[Of course, can use μ^+ also.]

KIRK T. MCDONALD

U. IOANNINA, MAY 21, 2004

A Neutrino Factory Based on a Muon Storage Ring

Multimawatt Target for a Muon Collider/Neutrino Factory

Use a free mercury jet as target for a 4-MW proton beam to produce π 's, μ 's and ν 's.

Capture the charged π 's in a 20-T solenoid magnet.

Targetry R&D:

Mercury jet dispersed by a proton beam.

Nick Simos performing solid target studies in a BNL hot cell.

Can Study CP Violation of Neutrinos at L/E = (2n + 1)500 km/GeV [Marciano, hep-ph/0108181, Diwan *et al.*, hep-ph/0303081]

The *n*th maximum of ν_2 - ν_3 oscillations occurs at $L/E \approx (2n+1)400$ km/GeV.

The CP asymmetry grows with distance:

$$A = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \approx \frac{2s_{12}c_{12}c_{23}\sin\delta}{s_{23}s_{13}} \left(\frac{\Delta m_{12}^{2}}{\Delta m_{23}^{2}}\right) \frac{\Delta m_{23}^{2}L}{4E_{\nu}}$$
$$\Rightarrow \frac{\delta A}{A} \approx \frac{1}{A\sqrt{N}} \propto \frac{E_{\nu}}{L\sqrt{N}} \approx \text{ independent of } L \text{ at fixed } E_{\nu}.$$

 $N_{\rm events} \propto 1/L^2$, \Rightarrow Hard to make other measurements at large L.

Low E_{ν} favorable for CP violation measurements.

If (still) need to disentangle matter effects from CP asymmetries, use the n = 0 and 1 oscillation maxima with E_1 as low as possible, Ex: FNAL-Kenosha (986 km), BNL-FNAL (1286 km).

Narrowband Beam via Solenoid Focusing

(physics/0312022)

- Point-to-parallel focusing occurs for $P_{\pi} = eBd/(2n+1)\pi c$.
- \bullet \Rightarrow Narrowband neutrino beam with multiple peaks at

$$E_{\nu} \approx \frac{4}{9} \frac{eBd}{(2n+1)2\pi c}$$

 \bullet \Rightarrow Can study several neutrino oscillation peaks at once, at

$$\frac{1.27M_{23}^2[\mathbf{eV}^2] \ L[\mathbf{km}]}{E_{\nu}[\mathbf{GeV}]} = \frac{(2n+1)\pi}{2}$$

- Get both ν and $\bar{\nu}$ at the same time (while ν_e and $\bar{\nu}_e$ suppressed), \Rightarrow Must use detector that can identify sign of μ and e,
 - \Rightarrow Must use detector that can identify sign of
 - \Rightarrow Magnetized liquid argon TPC.

KIRK T. MCDONALD

Liquid Argon TPC Overview

- A liquid argon time-projection chamber is a total-absorption tracking calorimeter = An electronic bubble chamber.
- It's efficiency for detection of ν_e appearance events will be greater than 90% for GeV energies.
 (This is ≥ 3 times the efficiency of low-Z sampling detectors.)
- A large (> 10 kton) liquid argon TPC, if in a single cryostat, will cost very nearly the same as a low-Z sampling detector of the same mass. (There is highly competitive industry support for production, purification and storage of large quantities of liquid argon. Liquid scintillator costs 2.5 times as much as liquid argon, per unit mass.)
- The hardware of a liquid argon TPC is in a mature state, and readily scalable to large masses.
- More in need of further development is the software
 - in the style of bubble chambers.

(Human scanning of event displays if necessary.)

ICARUS Liquid Argon TPC

Liquid argon time projection chamber conceived by C. Rubbia (1977).

Largest implementation to date is the ICARUS T600 (600 ton) module, on the surface in Pavia, Italy. http://www.aquila.infn.it/icarus/

Events from the ICARUS T300 Cosmic Ray Test

Liquid Argon TPC Properties

- 3D tracking + total-absorption calorimetry.
- Pixel size: $3 \text{ mm} \times 3 \text{ mm}$ (wire planes) $\times 0.6 \text{ mm}$ (via 400 ns time sampling).
- $\rho = 1.4 \text{ g/cm}^3$, T = 89K at 1 atm., $X_0 = 14 \text{ cm}$, $\lambda_{\text{int}} = 80 \text{ cm}$.
- A minimum ionizing particle yields 50,000 e/cm.
- Drift velocity of 1.5 m/msec at 500 V/cm \Rightarrow 5 m drift in 3 msec.
- Diffusion coef. $D = 6 \text{ cm}^2/\text{s} \Rightarrow \sigma = 1.3 \text{ mm after 3 msec.}$
- Can have only 0.1 ppb of O_2 for a 5 m drift, \Rightarrow Purify with Oxisorb.
- Liquid argon costs 0.7M/kton and is "stored" not "used".

• Large modules ($\gtrsim 100$ kton) can be built using technology of liquid methane storage. (Total cost of a 100-kton detector is estimated to be \$200M.)

- Detector is continously "live" and can be "self-triggered" using pipelined, zero-suppression electronics.
- Operates at the Earth's surface with near zero overlap of cosmic ray events.
- Detector is compatible with operation in a magnetic field.

LANNDD – 100 kton Liquid Argon Neutrino and Nucleon Decay Detector (astro-ph/0105442, Nucl. Instr. and Meth. A503, 136 (2003))

F. Sergiampietri-August 2000

Max drift length of 5 m (limited by O_2 purity), \Rightarrow Several drift cells.

KIRK T. MCDONALD

U. IOANNINA, MAY 21, 2004

Before a Neutrino Factory, a Neutrino Superbeam

 $\pi \rightarrow \mu \nu$ decay kinematics has a Jacobian peak: $\theta \approx 2^{\circ}$ / GeV. (Sternheimer, 1955)

KIRK T. MCDONALD

U. IOANNINA, MAY 21, 2004

Off-Axis Neutrino Beams from CERN

Site	Distance to CERN (km)	Lat.	Long.	∠ _{CERN} to Leuca
Voghera	270	44.9°	8.95°	4.4 °
Florence	490	43.7°	11.15°	3.9°
Gran Sasso	730	42.45°	$oldsymbol{13.57}^\circ$	2.5°
Leuca	1225	39.8 °	18.35°	_

Could also use converted LNG tanker in the Gulf of Taranto:

KIRK T. MCDONALD

Neutrinos and Arms Control Workshop, U. Hawaii, 5-7 February 2004

Goal: Detect Reactors from Whole Earth. Need ≈ 1 gigaton detector = 1 km³, with ≈ 1 MeV sensitivity.

reaction process : inverse- β decay $(\bar{\nu}_e + p \longrightarrow e^+ + n)$

distinctive two-step signature

- \overline{v}_{e} energy measurement $E_{v} \sim (E_{e} + \Delta)/I + \frac{E_{e}}{M_{p}}I + \frac{\Delta^{2} - m_{e}^{2}}{M_{p}}$ $\Delta = M_{n} - M_{p}$
- delayed part : γ (2.2 MeV)

o prompt part : e⁺

- $E_{th} = \frac{(M_n + m_e)^2 M_p^2}{2M_p} = 1.806 \text{ MeV}$ **o** tagging : correlation of time, position and energy between prompt and delayed signal
- (J. Learned, U. Hawaii)

http://www.phys.hawaii.edu/~jgl/nacw/agenda.html

- 100 modules $@ 10^7$ ton each.
- Balloons with radius 134 m.
- Flexible bag with photodetector and electronics on inner wall, pressure tolerant.
- Slightly buoyant, haul up for service. Anchoring forces < 30 tons
- Get water from Antarctic? Reverse osmosis?

Destruction of Nuclear Bombs Using

Ultra-High Energy Neutrino Beam

- dedicated to Professor Masatoshi Koshiba -

Hirotaka Sugawara^{*} Hiroyuki Hagura[†]

gura[†] Toshiya Sanami[‡]

Figure 1: Neutrino radiation from a race track shaped muon storage ring. The decay of muons will produce the neutrino radiation emanating out tangentially everywhere from the ring. In particular, the straight sections in the ring will cause radiation "hot spots" where all of the decays line up into a pencil beam.

Abstract

We discuss the possibility of utilizing the ultra-high energy neutrino beam ($\simeq 1000$ TeV) to detect and destroy the nuclear bombs wherever they are and whoever possess them.

Figure 2: Neutrino beam is aimed at the nuclear bomb that is placed on the opposite side of the earth. The beam is emitted downstream from one of the straight sections of the muon storage ring (see fig. 1), and reaches the bomb after passing through the inside of the earth.