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The longitudinal polarization of photons in the range 1-10 MeV can be determined by
observation of the asymmetry in the rate of transmission of the photons through a block
of magnetized iron on reversal of the polarity of the magnetization [1, 2]. In this energy
range the dominant photon interaction with matter is Compton scattering. The Compton
scattering cross-section can be written

σ = σ0 + PγP
Fe
e−σ1, (1)

where σ0 is the unpolarized (Klein-Nishina) cross-section, Pγ is the net longitudinal polariza-
tion of the photons, PFe

e− is the net longitudinal polarization of the atomic electrons (naively
±2/26 for saturated iron, but more accurately determined to be ±2.06/26 = ±0.0792), and
σ1 is the polarized cross-section [1]. Figure 1 illustrates the energy dependence of the cross
sections σ0 and σ1.

Figure 1: The total cross sections σ0 and σ1 for Compton scattering of longitudinally polar-
ized photons of energy Eγ off unpolarized and longitudinally polarized electrons, respectively.
r0 is the classical electron radius.

If the apparatus is such that any photon which scatters in the iron is not detected, then
the probability T±(L,E) of transmission of a photon of energy E and longitudinal polarization
Pγ through a block of iron of length L and longitudinal polarization ±PFe

e− can be written as

T±(L, E) = e−nFe
e−Lσ±(E) = e−nFe

e−Lσ0e±nFe
e−LPFe

e−Pγσ1, (2)
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where nFe
e− is the number density of atoms in iron, and the +(−) in T± applies if the electron

spin in the iron is anti-parallel (parallel) to the direction of the incident photons. In case of
a beam of photons with energy spectrum Nγ(E) and longitudinal polarization that depends
on energy according to Pγ(E), the transmission is

T±(L) =
∫

T±(L, E)Nγ(E) dE =
∫

e−nFe
e−Lσ0(E)e±nFe

e−LPFe
e−Pγ(E)σ1(E)Nγ(E) dE. (3)

The transmission asymmetry is

δ =
T +(L) − T−(L)

T +(L) + T−(L)
=

∫
e−nFe

e−Lσ0(E)
(
enFe

e−LPFe
e−Pγ(E)σ1(E) − e−nFe

e−LPFe
e−Pγ(E)σ1(E)

)
Nγ(E) dE

∫
e−nFe

e−Lσ0(E)
(
enFe

e−LPFe
e−Pγ (E)σ1(E) + e−nFe

e−LPFe
e−Pγ(E)σ1(E)

)
Nγ(E) dE

≈ nFe
e−LPFe

e−

∫
e−nFe

e−Lσ0(E)Pγ(E)σ1(E)Nγ(E) dE∫
e−nFe

e−Lσ0(E)Nγ(E) dE

= nFe
e−LPFe

e−

∫
e−nFe

e−Lσ0(E)σ1(E)Nγ(E) dE∫
e−nFe

e−Lσ0(E)Nγ(E) dE

∫
e−nFe

e−Lσ0(E)Pγ(E)σ1(E)Nγ(E) dE∫
e−nFe

e−Lσ0(E)σ1(E)Nγ(E) dE

≡ AγP
Fe
e− 〈Pγ〉 , (4)

where the approximation holds when nFe
e−LPFe

e−Pγ(E)σ1(E) is small compared to 1 (as in
usual practice), the analyzing power Aγ is

Aγ = nFe
e−L

∫
e−nFe

e−Lσ0(E)σ1(E)Nγ(E) dE∫
e−nFe

e−Lσ0(E)Nγ(E) dE
, (5)

and the cross-section-weighted average polarization of the beam is

〈Pγ〉 =

∫
Pγ(E)e−nFe

e−Lσ0(E)σ1(E)Nγ(E) dE∫
e−nFe

e−Lσ0(E)σ1(E)Nγ(E) dE
. (6)

The weighting factor e−nFe
e−Lσ0(E)σ1(E) is shown in Fig. 2 for L = 15 cm of iron, and has the

approximate form 0.001(E − 2) for E > 2 MeV.
Example: Suppose the photon beam has a nearly uniform energy distribution between 0

and 8 MeV, and the longitudinal polarization varies from −1 at E = 0 to +1 at E = 8 MeV,
which approximates the conditions of SLAC experiment E166 [3]. Then, Nγ(E) is constant
and Pγ = E/4 − 1 for 0 < E < 8MeV, so that the average polarization according to eq. (6)
is

〈Pγ〉 =

∫ 8
2 (E/4 − 1)(E − 2) dE∫ 8

2 (E − 2) dE
=

1

2
. (7)
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Figure 2: The polarization weighting factor e−nFe
e−Lσ0(E)σ1(E) for L = 15 cm of iron.
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