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1 Problem

Deduce scalar and vector potentials relevant to the lowest electromagnetic mode in a right
circular cylindrical cavity of radius R and axial extend 2D, assuming the walls to be perfect
conductors, and the interior of the cavity to be vacuum.

2 Solution

For the case of a rectangular cavity, see [1].

2.1 E and B Fields of the Cavity Modes

In cylindrical coordinates (r, φ, z) with the z-axis being that of the cavity, only Ez and Bφ are
nonzero, such that for time dependence e−iωt we have (in Gaussian units; see, for example,
sec. 8.7 of [2]),

Ez = E0 J0(kr) e−iωt, (1)

Bφ = −iE0 J1(kr) e−iωt, (2)

where the resonant frequency is,

ω = kc =
2.405c

R
, (3)

such that J0(kR) = 0 so the tangential electric field is zero at r = R, and c is the speed of
light in vacuum. The magnetic field is related to the electric field by Faraday’s law,

∇× E = −∂B

∂ct
= ikB. (4)

2.2 Potentials

The electromagnetic fields E and B can be related to scalar and vector potentials V and A
according to,

E = −∇V − 1

c

∂A

∂t
= −∇V + ikA, B = ∇ × A. (5)
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In sec. 2.1 we deduced the electromagnetic fields inside the cavity, but did not comment on
their values outside it. While it seems most reasonable to consider the case that E and B
are zero outside the cavity, we can also imagine the case of periodic boundary conditions, in
which the space at r < R space is filled with an infinite collection of cavities similar to the
specified one.

2.2.1 Hamiltonian Gauge

A simple option for the potentials is to adopt the so-called Hamiltonian gauge in which the
scalar potential is everywhere zero (see, for example, sec. 8 of [3]),1,2

V (H) = 0, A(H) = − iE

k
=

⎧⎨
⎩ − iE0

k
J0(kr) e−iωt ẑ (inside),

0 (outside).
(6)

Then, ∇ × A(H) = B is confirmed by use of Faraday’s law, eq. (4), and also by noting that
dJ0(kr)/dr = −kJ1(kr). Clearly, the form A(H) = −iE/k holds for all other electromagnetic
modes of the cavity.

This vector potential is not continuous on the planar faces of the cavity. However, this
is not a formal problem in that the computation B = ∇ × A next to the surface does not
involve derivatives normal to that surface.3

2.2.2 Poincaré Gauge

In cases where the E and B fields are known, we can compute the potentials in the so-called
Poincaré gauge (see sec. 9A of [3] and [6, 7]),4 in which,

V (P)(x, t) = −x ·
∫ u0=1

0

duE(ux, t), A(P)(x, t) = −x × I(B), (7)

where,

I(B) =

∫ u0=1

0

u duB(ux, t). (8)

1This gauge appears to have been first used by Gibbs in 1896 [4].
2For a static electric field the Hamiltonian-gauge vector potential is A(H) = −c(t − t0)E, while for a

static magnetic field the vector potential is the same as that in the Coulomb gauge (and also in the Lorenz
gauge).

3In Hamiltonian dynamics of a particle with charge q the normal (z) component of the canonical mo-
mentum p = pmech + qA/c takes a discontinuous step when a particle enters or exits the rf cavity through
the planar faces. This undesirable feature can be mitigated by switching from coordinates (x, y, z) with
independent variable t to coordinates (x, y, t) with independent variable z, in which case the canonical mo-
mentum of the t-coordinate is pt = −Emech − qV (see, for example, sec. 1.6 of [5]), which is just −Emech in
the Hamiltonian gauge. Then, if the faces of the cavity traversed by particles are at constant z, all three
canonical momenta px, py and pt are continuous. Only if the particles are muons would it be considered
practical to used closed rf cavities.

4The Poincaré gauge is also called the multipolar gauge [8].
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These forms are remarkable in that they depend on the instantaneous value of the fields only
along a line between the origin and the point of observation.

For points x outside the cavity (whose center is at the origin) such that the vector x
passes through the cavity wall at r = R, then Ez(ur) and Bφ(ur) are nonzero only for
u < u0 = R/r, whereas if the vector x passes through the cavity wall at |z| = D, then
Ez(ur) and Bφ(ur) are nonzero only for u < u0 = D/ |z|. Thus, using 8.402 and 5.51 of [9]
the scalar potential is,

V (P) = −zE0 e−iωt

∫ u0

0

du J0(kur) = −zE0

kr
e−iωt

∫ ku0r

0

dv J0(v)

= −zE0

kr
e−iωt

∫ ku0r

0

dv

[
1 − v2

22
+

v4

26
− v6

26 · 32
+ · · ·

]

= −zE0u0 e−iωt

[
1 − (ku0r)

2

22 · 3 +
(ku0r)

4

26 · 5 − (ku0r)
6

26 · 32 · 7 + · · ·
]

= −2zE0

kr
e−iωt

∞∑
j=0

J2j+1(ku0r). (9)

Since −∇V has a nonzero radial component, and its axial component is not equal to the
electric field (1), we anticipate that the vector potential will have both radial and axial
components.

For the vector potential we have, using 8.402 of [9], that,

Iφ(B) = −iE0 e−iωt

∫ u0

0

u du J1(kur) = − iE0

k2r2
e−iωt

∫ ku0r

0

v dv J1(v)

= − iE0

k2r2
e−iωt

∫ ku0r

0

dv

[
v2

2
− v4

24
+

v6

27 · 3 − · · ·
]

= −iE0kru3
0 e−iωt

[
1

2 · 3 − (kru0)
2

24 · 5 +
(kru0)

4

27 · 3 · 7 − · · ·
]

=
iE0

k2r2
e−iωt

∫ ku0r

0

v dv
dJ0(v)

dv
=

iE0

k2r2
e−iωt

∫ ku0r

0

dv

[
d(vJ0(v))

dv
− J0(v)

]

=
iE0

k2r2
e−iωt

[
ku0rJ0(ku0r) − 2

∞∑
j=0

J2j+1(ku0r)

]
. (10)

The vector potential A(P) = −x× I(B) has components,

A(P)
r = zIφ(B) =

izE0

k2r2
e−iωt

[
ku0rJ0(ku0r) − 2

∞∑
j=0

J2j+1(ku0r)

]
, (11)

A(P)
z = −rIφ(B) = − iE0

k2r
e−iωt

[
ku0rJ0(ku0r) − 2

∞∑
j=0

J2j+1(ku0r)

]
. (12)

On the z-axis, u0 is either 1 or D/ |z|, so Iφ(B) (and the vector potential) vanishes there. In
the central region outside the cavity, where r/ |z| > R/D, we have that u0 = R/r so Iφ(B)
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falls off as 1/r2 and hence A(P) falls off as 1/r at large r. In the forward and backward
regions outside the cavity, where r/ |z| < R/D, we have that u0 = D/ |z| so Iφ(B) falls off as

r/ |z|3 and hence A
(P)
r falls off as r/ |z|2 < R/D |z|, and A

(P)
z falls off as r2/ |z|3 < R2/D2 |z|

at large r.
In sum, the Poincaré potentials fall off as 1/ |x| at large |x|.

Further Discussion of the Exterior Potentials

The electric field is related by eq. (5), so outside the cavity where E = 0 = B we have
that,

A(P) = − i

k
∇V, A(P)

r = − i

k

∂V

∂r
, A

(P)
φ = 0, A(P)

z = − i

k

∂V

∂z
. (13)

Then B = (i/k)∇ × ∇V (P) = 0 as expected. In the central exterior region, r > R, r/ |z| >
R/D and u0 = R/r, we have that,

V (P) = = −2zE0

kr
e−iωt

∞∑
j=0

J2j+1(kR), (14)

A(P)
r = −2izE0

k2r2
e−iωt

∞∑
j=0

J2j+1(kR), (15)

A(P)
z =

2iE0

k2r
e−iωt

∞∑
j=0

J2j+1(kR), (16)

in agreement with eqs. (11)-(12).

2.2.3 Lorenz Gauge

The potentials in the Lorenz gauge include the well-known retarded potentials.5 For a cavity
with perfectly conducting walls, and time dependence e−iωt, the only charge and current
densities reside on these walls, so the retarded potentials (in the frequency domain) have the
form,

V (L,ret)(x) =

∫
σ(x′) eikr

r
dArea′ =

∫
E(x′) · n̂′ eikr

4πr
dArea′, (17)

A(L,ret)(x) =

∫
K(x′) eikr

cr
dArea′ =

∫
n̂′ ×B(x′) eikr

4πr
dArea′, (18)

where σ and K are the surface charge and current densities, and n̂′ is the inward unit vector
normal to the bounding surface. These potentials are nonzero both inside and outside of the
cavity.

It does not seem possible to give analytic expressions for these potentials in the present
example.

Following a comment in prob. 14.2 of [11], we note that the Hamiltonian-gauge potentials
(6) satisfy the Lorenz-gauge condition ∇ · A(L) = −∂V (L)/∂ct (and the vector potential

5Other forms are possible as well, as Lorenz-gauge potentials are subject to a class of restricted gauge
transformations, as discussed, for example, in sec. 2.3.1 of [10].
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satisfies the Coulomb-gauge condition ∇ · A(L) = 0) inside the cavity, although the spatial
derivatives are not defined on the planar cavity walls. Can we infer that at least in the
interior of the cavity the vector potential (18) is both the Lorenz-gauge and Coulomb-gauge
potential, and that the Lorenz-gauge scalar potential is zero inside the cavity? For potentials
to be in some gauge, they must satisfy the gauge condition everywhere, and not just in some
restricted region as considered in [11].

The surface charge density σ has opposite signs on the planar walls of the cavity, and
is independent of the cavity length, such that the retarded potential (17) is nonzero. For
example, consider a cavity that extends from z = 0 to d where kd � 1. Then, for a point
inside the cavity far from both ends, z � 1/k and d − z � 1/k, the retarded potential is,

V (L,ret)(x) ≈ Q

(
eikz

z
− eik(d−z)

d − z

)
�= 0, (19)

where Q is the peak charge density on the planar ends. This potential also holds for points
outside the cavity such that

√
x2 + y2 is small compared to z � 1/k and d− z � 1/k. Only

on the plane z = d/2 does V (L,ret) = 0. Then, the retarded vector potential in this region
follows as,

A(L,ret)
z (x) = − i

k

(
∂V

∂z
+ Ez

)
≈ − iQ

k

[(
ik − 1

z

)
eikz

z
+

(
ik − 1

d − z

)
eik(d−z)

d − z

]

+

⎧⎨
⎩ − iE0

k
J0(kr) (inside),

0 (outside).
(20)

Similar approximations can be given for the (nonzero) Lorenz-gauge retarded potentials
outside the cavity for z � 1/k and z − d � 1/k.

2.2.4 Coulomb Gauge

The Coulomb gauge (favored by Maxwell) is defined by the condition that ∇ ·A(C) = 0. The
Coulomb gauge (like the Lorenz gauge) is a velocity gauge, with the speed v of propagation
of the scalar potential V (C) being infinite. Coulomb-gauge potentials are not unique, but
different variants can be related by a gauge transformations whose gauge function χ obeys
∇2χ = 0.

Coulomb-gauge potentials for cavities and waveguides are extensively discussed in chap. 13
of [12], to which the reader is referred.6
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