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We review a recent argument by Sprangle et al. [1] that acceleration of charged particles
is not possible by the use of Gaussian laser beams far from and walls, lenses, mirrors, etc..

1 Gaussian Laser Beams That Satisfy ∇ · E = 0

The Gaussian approximation to a laser beam focus is given in many standard references as,

E =
E0x̂√
1 + ς2

e−i tan−1 ςeiρ2ς/(1+ς2)e−ρ2/(1+ς2)ei(kz−ωt), (1)

where ρ2 = (x2 + y2)/w2
0 with w0 being the radius of the waist, and ς = z/z0 with z0 =

πw2
0/λ = kw2

0/2 being the Rayleigh range. This form describes the main features of the
focus, particularly diffraction, but it does not satisfy the Maxwell equation ∇ · E = 0. To
see this, note that a divergence-free field that points only in the x direction cannot vary with
x.

For many purposes the above form is a good enough approximation. However, eq. (1)
predicts that charged particles passing through the laser focus undergo a net acceleration.1

However, there is a prejudice among many accelerator physicists that this is impossible.2

In SLAC experiment E-144 [6], details of the electron trajectories through the laser beam
will affect the strength of the nonlinear interactions, so we have a special interest in a good
model of the laser focus. Several papers offer improvements to eq. (1). The one I like best
is [3]. This note is largely a detailed reworking of that paper.

A key insight of [3] is that the form of eq. (1) can more properly be used for the vector
potential A than the electric field E. In general, the divergence of the vector potential need
not be zero and there are solutions to Maxwell’s equations with nonuniform vector potential
that point only along the x-axis.

A second useful insight is that when the wave equation for the vector potential is written
in terms of the dimensionless variables,

ξ =
x

w0
, υ =

y

w0
, ρ2 = ξ2 + υ2, and ς =

z

z0
, (2)

then a series expansion suggests itself. Namely, the focal region has transverse and longitu-
dinal extent in the ratio,

θ0 =
w0

z0
=

2

kw0
. (3)

The aspect ratio θ0 (also the diffraction angle) is typically much less than one and so can
serve as the expansion parameter.

1This is perhaps not self evident, but can be verified numerically. See, for example, [2].
2This argument is particularly due to Palmer [4], and applies to “weak” laser fields. In “strong” laser

fields, acceleration of electrons “in vacuum” is possible. Some discussion of this is given in [5].
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We consider only harmonic fields with time dependence e−iωt. Then the wave equation
for the vector potential in free space becomes,

∇2A + k2A = 0, where k =
ω

c
=

2π

λ
. (4)

We work in the Lorentz gauge, so the scalar potential may be written,

φ = − i

k
∇ · A. (5)

The electric and magnetic field can be deduced from the vector potential via,

E = −∇φ− 1

c

∂A

∂t
=
i

k
∇(∇ · A) + ikA, and B = ∇ × A. (6)

We seek fields that propagate in the +z direction, have limited transverse extent, and
for which the vector potential has only an x component. We try,

A(r) = x̂ψ(r)ei(kz−ωt), (7)

where ψ varies “slowly”. From eqs. (4) and (7) we find that ψ must obey,

∇2ψ + 2ik
∂ψ

∂z
= 0. (8)

In terms of the dimensionless variables introduced in eqs. (2) and(3) this becomes,

∇2
⊥ψ + 4i

∂ψ

∂ς
+ θ2

0

∂2ψ

∂ς2
= 0, where ∇2

⊥ =
∂2

∂ξ2 +
∂2

∂υ2
. (9)

This form suggests the series expansion,

ψ = ψ0 + θ2
0ψ2 + θ4

0ψ4 + ... (10)

Inserting this into eq. (9) and collecting terms of order θ0
0, and θ2

0, we find,

∇2
⊥ψ0 + 4i

∂ψ0

∂ς
= 0, (11)

and,

∇2
⊥ψ2 + 4i

∂ψ2

∂ς
= −∂

2ψ0

∂ς2
, (12)

respectively. Equation (11) can be recognized as the paraxial wave equation whose Gaussian
solution was given in eq. (1). That is,

ψ0 = fe−fρ2

, (13)

where,

f =
−i
ς − i

=
1 − iς

1 + ς2
=
e−i tan−1 ς

√
1 + ς2

. (14)
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Davis [3] cleverly guessed the solution to eq. (12),

ψ2 =

(
f

2
− f3ρ4

4

)
ψ0. (15)

The electric and magnetic fields are obtained by inserting our vector potential,

A = x̂ei(kz−ωt)(ψ0 + θ2
0ψ2), (16)

into eq. (6), with the result (to order θ3
0 and after dividing out a factor of ik),

Ex = ei(kz−ωt)

[
ψ0 + θ2

0

(
ψ2 +

1

4

∂2ψ0

∂ξ2

)]
= E0

[
1 + θ2

0

(
f2ξ2 − f3ρ4

4

)]
, (17)

Ey = ei(kz−ωt)θ
2
0

4

∂2ψ0

∂ξ∂υ
= E0θ

2
0f

2ξυ, (18)

Ez =
iθ0

2
ei(kz−ωt)

[
∂ψ0

∂ξ
+ θ2

0

(
∂ψ2

∂ξ
− i

2

∂2ψ0

∂ξ∂ς

)]
= −iθ0fξE0

[
1 + θ2

0

(
f2ρ2 − f

2
− f3ρ4

4

)]
,

(19)

By = ei(kz−ωt)

[
ψ0 + θ2

0

(
ψ2 −

i

2

∂ψ0

∂ς

)]
= E0

[
1 + θ2

0

(
f2ρ2

2
− f3ρ4

4

)]
, (20)

Bz =
iθ0

2
ei(kz−ωt)

(
∂ψ0

∂υ
+ θ2

0

∂ψ2

∂υ

)
= −iθ0fυE0

[
1 + θ2

0

(
f2ρ2

2
+
f

2
− f3ρ4

4

)]
, (21)

where E0 = ei(kz−ωt)ψ0 is also given in eq. (1). As a check, I have verified that these expression
satisfy ∇ · E = 0 = ∇ · B plus terms of order θ4

0. Also, eqs. (17)-(21) with terms only to
order θ0 satisfy ∇ · E = 0 = ∇ ·B plus terms of order θ2

0.

Remarks:

• The fields corresponding to circular polarization are “readily” constructed from the
above.

• The E-144 simulations should in principle include the transverse deflection of the elec-
trons as they pass through the above laser fields. The transverse displacements are,
however, rather small. Recall that for a circularly polarized plane wave of intensity
parameter η = eE/mωc the radius of the helical motion is r� = ηλ�/2π in the average
rest frame of the electron. In terms of quantities measured in the lab frame, the radius
is then r = r� = ηλ/2πγ.

• To use the theories of nonlinear Compton scattering and multiphoton pair creation we
will no doubt continue to insert the local value of the field from the above forms into
the calculations based on uniform plane waves. The corrections to the simple Gaussian
approximation remind us that this procedure may not be completely valid.

• The paper [7] gives another version of improved Gaussian beams for which the electric
field remains transverse, but contains evanescent waves confined to the focal region as
well as propagating waves; I don’t think this approximation satisfies ∇ · E = 0.
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2 Vacuum Laser Acceleration

The papers [1] used the electric fields found above to order θ0 to show that the laser ac-
celeration scheme [2] won’t work (at that order). Earlier references to schemes of this sort
include [8, 9].

2.1 Laser Beams at Small Angles to the Electron Momentum

Consider a particle of unit charge moving at velocity c along the line x = zθ where θ is a
small angle. The particle passes through a laser field given by eqs. (17) and (19), where it
suffices to keep terms only to order θ0. Take y = 0 always, and suppose that particle passes
the origin at t = 0. In terms of the dimensionless variables ξ, ς and ρ, the trajectory is,

ρ = ξ =
θς

θ0
. (22)

The electric field component along the particle’s trajectory is,

E‖ = Ex sin θ + Ez cos θ ≈ Exθ(1 − ifς) = Exθf, (23)

noting that eq. (19) implies,

Ez ≈ −iθ0fξEx = −iθfςEx, (24)

and that eq. (14) leads to the identity,

1 − ifς = f. (25)

The particle has coordinate z at time t = z/(c cos θ), so ,

kz − ωt ≈ −kzθ
2

2
= −θ

2

θ2
0

ς. (26)

Then,
Ex = E0fe

−fρ2

ei(kz−ωt) ≈ E0fe
−fς2θ2/θ2

0e−iςθ2/θ2
0 = E0fe

−ifςθ2/θ2
0, (27)

using eqs. (25) and (26). Inserting this into eq. (23) we have,

E‖ = θf2E0e
−ifςθ2/θ2

0 =
d

dς

(
iθ2

0

θ
E0e

−ifςθ2/θ2
0

)
. (28)

That is, the force on the particle along its trajectory can be derived from a potential. The
change in energy along the trajectory is then just the change in the potential. However, the
potential,

U = − iθ
2
0

θ
E0e

−ifςθ2/θ2
0 (29)

has the same value at ς = −∞ and +∞, so the particle undergoes no net acceleration as it
crosses the laser beam.
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2.2 Laser Beam at 90◦ to the Electron Momentum

The preceding argument does not hold for large angles, so we also consider the case of
θ = 90◦. Here, the particle’s trajectory is x = ct, y = z = 0. Then, kz − ωt becomes
−kx = −2ξ/θ0 at the particle, and so,

E‖ = Ex = E0e
−ξ2

cos(−2ξ/θ0)[1 + θ2
0(ξ

2 − ξ4/4)], (30)

taking the real part of eq. (17) and noting that f = 1 and ρ = ξ now. The energy gain (and
also the momentum gain, since v ≈ c) is proportional to

∫ ∞
−∞E‖dξ which would be nonzero

if we ignored the order θ2
0 terms. In my integral tables I find,

∫ ∞

−∞
ξ2ne−ξ2

cos(−2ξ/θ0)dξ = (−1)n

√
π

22n
e−1/θ2

0H2n(1/θ0), (31)

where Hn is a Hermite polynomial,

H0(x) = 1, H2(x) = 2 − 4x2, H4(x) = 12 − 48x2 + 16x4, ... (32)

These forms show that our expansion of Ex to order θ2
0 is not sufficient to settle the question

since the term θ2
0ξ

4e−1/θ2
0 in the energy-gain integral leads to a term proportional to e−1/θ2

0/θ2
0.

A suggestive fact is that,

∫ ∞

−∞
e−ξ2

cos(−2ξ/θ0)(1 + θ2
0ξ

2)dξ =
√
π
θ2

0

2
e−1/θ2

0 , (33)

so it may well be that the energy-gain integral vanishes when the higher-order terms are
properly summed over.

2.3 A General Argument

Sprangle et al. [1] then propose an acceleration scheme based on laser beams of two frequen-
cies, claiming the ponderomotive force provides the acceleration. I very much doubt that
this scheme is valid, since (in the first approximation) the ponderomotive force is propor-
tional to the gradient of the square of the time-averaged vector potential.3 An electron that
enters and leaves a region of realistic laser fields far from walls is asymptotically in regions
of vanishing vector potential, so the net change of the ponderomotive potential is zero and
the electron exchanges no net energy with the laser field.
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