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1 Problem

A simple rf cavity is a right circular cylinder of radius a and length d, for which the TM0,1,0

mode has electromagnetic fields (in Gaussian units),

Ez(r, θ, z, t) = E0J0(kr) cos ωt, (1)

Bθ(r, θ, z, t) = E0J1(kr) sin ωt, (2)

where ka = 2.405 is the first zero of the Bessel function J0.
Such a cavity is potentially interesting for particle acceleration in that the electric field

points only along the axis and is independent of z, so that a large fraction of the maximal
energy eEd could be imparted to a particle of charge e as it traverses the cavity. However,
such cavities are not useful in practice for at least two reasons: the particles must pass
through the cavity wall to enter or exit the cavity and thereby suffer undesirable scattering;
the magnetic field does not vary linearly with radius, and so acts like a nonlinear lens for
particles whose motion is not exactly parallel to the axis.

Practical accelerating cavities have apertures (irises) of radius b in the entrance and exit
surfaces, so that a beam of particles can pass through without encountering any material. In
this case, the electric field can no longer be purely axial. Deduce the simplest electromagnetic
mode of a cavity with apertures for which the transverse components of the electric and
magnetic fields vary linearly with radius. Deduce also the shape of the wall of a perfectly
conducting cavity that could support this mode.

Consider a cavity of extent −d < z < d, with azimuthal symmetry and symmetry about
the plane z = 0, that could be a unit cell of a repetitive structure. This implies that either
Ez = 0 at (r, z) = (0, d) and (0,−d), or ∂Ez/∂z = 0 at these points.

2 Solution

We seek a standing-wave solution where, say, the time dependence of Ez is cos ωt. The cavity
is symmetric about the plane z = 0, so we expect the z dependence of Ez to have the form
cos knz, where,

kn =

⎧⎨
⎩

(2n − 1)π/2d, if Ez(0,−d) = Ez(0, d) = 0,

nπ/d, if ∂Ez(0,−d)/∂z = ∂Ez(0, d)/∂z = 0.
(3)
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We can combine these two cases in the notation,

kn = (2n − n0)
π

2d
, where

⎧⎨
⎩

n0 = 1, if Ez(0,−d) = Ez(0, d) = 0,

n0 = 2, if ∂Ez(0,−d)/∂z = ∂Ez(0, d)/∂z = 0.
(4)

where n = 1, 2, 3, ...
Our trial solution,

Ez(r, z, t) = fn(r) cos knz cos ωt, (5)

must satisfy the wave equation,

∇2Ez − 1

c2

∂2Ez

∂t2
=

1

r

∂

∂r

(
r∂fn

r

)
−

(
k2

n − ω2

c2

)
fn = 0. (6)

This is the differential equation for the modified Bessel function of order zero, I0(Knr),
where,

K2
n = k2

n − ω2

c2
=

[
(2n − n0)

π

2d

]2

−
(

2π

λ

)2

, (7)

the free-space wavelength at frequency ω is λ = 2πc/ω, and,

I0(x) = 1 + (x/2)2 +
(x/2)4

(2!)2
+

(x/2)6

(3!)2
+ · · · (8)

In the special case of kn = 0, (6) reverts to the equation for the ordinary Bessel function
J0, and the fields (1-2) are obtained. Since this form cannot exist in a cavity with apertures,
we ignore it in further discussion.

A Fourier series for Ez with nonzero kn is then,

Ez(r, z, t) =
∞∑

n=1

anI0(Knr) cos knz cos ωt. (9)

The radial component of the electric field is obtained from,

∇ · E =
1

r

∂rEr

∂r
+

∂Ez

∂z
= 0, (10)

so that,

Er(r, z, t) =
1

r

∑
n

ankn

∫
rI0(Knr)dr sin knz cos ωt

=
r

2

∑
n

anknĨ1(Knr) sin knz cosωt, (11)

using the fact that d(xI1)/dx = xI0, and where,

Ĩ1(x) =
2I1(x)

x
= 1 +

(x/2)2

1!2!
+

(x/2)4

2!3!
+ · · · (12)
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The azimuthal component of the magnetic field is obtained from,

(∇× E)θ =
∂Er

∂z
− ∂Ez

∂r
= −1

c

∂Bθ

∂t
, (13)

so that,

Bθ(r, z, t) =
c

ω

∑
n

an

(
dI0(Knr)

dr
− k2

nr

2
Ĩ1(Knr)

)
cos knz sin ωt

=
πr

λ

∑
n

anĨ1(Knr) cos knz sinωt, (14)

using the fact that I ′
0(x) = I1(x).

We desire that the transverse fields Er and Bθ vary linearly with r. According to (11-12)
and (14), this requires that Kn = 0. The simplest choice is n = 1, n0 = 1, so that kn = π/2d
and d = λ/4. The fields are,

Ez = E0 cos
πz

2d
cosωt, (15)

Er =
πr

4d
E0 sin

πz

2d
cosωt, (16)

Bθ =
πr

4d
E0 cos

πz

2d
sinωt. (17)

The cavity length is 2d = λ/2, and Ez vanishes on axis at the ends of the cavity. This
configuration is called the π mode in accelerator physics. Since Er(z = ±d) �= 0, this
mode cannot exist in a structure with conducting walls at the planes z = ±d; apertures are
required.

The electric field is perpendicular to the walls of a perfectly conducting cavity. Expressing
the shape of the walls as r(z), we then have,

dr

dz
= −Ez

Er
= −4d

πr
cot

πz

wd
, (18)

which integrates to the form,

r2 = b2 −
(

4d

π

)2

ln
∣∣∣sin πz

2d

∣∣∣ , (19)

where b is the radius of the apertures at z = ±d. Near z = ±d, the profile is a hyperbola.
Since r → ∞ as z → 0, no real cavity can support the idealized fields (15-17). However, a
cavity with maximum radius a = 0.4d has a Fourier expansion (9) where a2 = 0.15a1 [1], so
the fields can be a good approximation to (15-17) in real devices.

We can obtain additional formal solutions in which Kn = 0 for any value of n, and for n0

either 1 or 2. However, these solutions are not really distinct from (15-17), but are simply
the result of combining any number of λ/2 cells into a larger structure. Such multicell π-
mode structures are difficult to operate in practice, because the strong coupling of the fields
from one cell to the next makes the useful range of drive frequencies extremely narrow. The
main application of π-mode cavities is for so-called rf guns, in which a half cell has a surface
at z ≈ 0 suitable for laser-induced photoemission of electrons, which are then accelerated
further in one or a few more subsequent cells [1].
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