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1 Problem

This note considers variations on the theme of a solenoid magnet (i.e., a magnet whose field
has axial symmetry) as a lens for charged particles. A related problem has been posed in
[1].

Recall that if a device is to be a lens with optic axis along the z axis in a cylindrical
coordinate system (r, φ, z), then as particles leave the device they must have no azimuthal
momentum, Pφ = 0, and their radial momentum must be proportional to their radial coor-
dinate, Pr ∝ r. Special cases are (1) that all particles have r = 0 at the exit of the device,
which is a focal point; and (2) that all particles have zero radial momentum.

1.1 Particle Source Inside the Solenoid: A Neutrino “Horn”

A neutrino “horn” is a magnetic device whose goal is to focus charged π mesons that emerge
from a target into a parallel beam, so that when the pions decay, π± → μ±ν, the resulting
neutrinos form a beam that has minimal angular divergence.1 Suppose the pions are pro-
duced at the origin, inside a solenoid magnet of uniform field B = Bẑ whose axis is the z
axis and whose downstream face is at z = L. Show that pions of momenta,

P =
eBL

(2n + 1)πc
, (n = 0, 1, 2, ....) (1)

emerge from the magnet with their momenta parallel to the z axis, independent of the
production angle θ (for θ � 1). In this case, the solenoid acts like an ideal thin lens of focal
length L, located at z = L.

Neutrinos from the forward decay of the resulting parallel beam of pions will have a quasi
line spectrum with momenta proportional to those of eq. (1). If the neutrinos are detected
at a distance l from the source, that distance can be chosen so that the various peaks in
the neutrino spectrum all satisfy the condition for maximal probability of oscillation into
another neutrino species prior to their detection.

1.2 Particle Source Outside the Magnet

Consider a point source of charged particles located at a distance D from the entrance to
solenoid magnet of length L and field strength B, the source being on the magnetic axis. For
what momenta P are particles with angle θ � 1 with respect to the magnetic axis focused
to a point on axis beyond the exit of the magnet?

1Because of the Jacobean peak in the two-body decay kinematics of the pion, for some purposes it is
favorable to use neutrinos produced at a nonzero decay angle. See, for example, [2].
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In both cases, the focusing effect is due to the fringe field of the magnet, and not due to
the uniform central field. A simple model of this effect (impulse approximation) supposes
the magnetic “kicks” of the fringe field occur entirely in the entrance and exit planes of the
magnet. Although this effect can be analyzed by direct use of F = ma, it is helpful to
consider the canonical (angular) momentum of the particle in the magnetic field. For this,
you can use either a Lagrangian formulation, or direction calculation via the Lorentz force
law, in which latter case first consider dLz/dt = d(r × P)z/dt.

2 Solution

Although this problem can be solved without explicit use of the canonical angular momen-
tum of a charged particle in a magnetic field, that concept offers an elegant perspective.
Therefore, we first discuss canonical momenta in sec. 2.1, and then comment on the paraxial
approximation in sec. 2.2, and the impulse approximation in sec. 2.3, before turning to the
solutions for solenoid focusing of particles produced outside, and inside, of the magnet in
secs. 2.4 and 2.5. The possibly novel aspect of this note is the discussion in sec. 2.5.1 of a
neutrino horn based on solenoid focusing.

2.1 Conservation of Canonical Angular Momentum

The canonical momentum p of a particle of electric charge e and rest mass m is (in rectangular
coordinates and in Gaussian units),

p = P +
eA

c
, (2)

where P = γmv = mv/
√

1 − v2/c2 is the mechanical momentum of the particle, A is the
(Coulomb-gauge) vector potential of the magnetic field at the position of the particle, and c
is the speed of light. The canonical angular momentum is,

l = r × p, (3)

where r is the position vector of the particle.
One way to deduce the conserved quantities for the particle’s motion is to consider its

Lagrangian or Hamiltonian. If an electric field is present as well, with electric potential V ,
the Lagrangian L of the particle can be written as [3],

L = −mc2

γ
+

eA · v
c

− eV, (4)

where v = dr/dt is the particle’s velocity. The canonical momentum associated with a
rectangular coordinate xi is therefore pi = ∂L/∂ẋi, leading to eq. (2). Then, the Hamiltonian
H of the system is,

H =

√
m2c4 +

(
p − eA

c

)2

+ eV. (5)
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If the external electromagnetic fields have azimuthal symmetry, then the potentials V
and A do also. We consider a cylindrical coordinate system (r, φ, z) with the z axis being
the axis of symmetry of the fields. Then, both the Lagrangian and the Hamiltonian have no
azimuthal dependence,

∂L
∂φ

=
∂H
∂φ

= 0, (6)

so the equations of motion (and the identities r = rr̂ + zẑ, ṙ = v = ṙr̂ + rφ̇φ̂ + żẑ) tell us
that the canonical momentum pφ is a constant of the motion (even for time-dependent fields,
so long as they are azimuthally symmetric),2

pφ =
∂L
∂φ̇

= r

(
γmrφ̇ +

eAφ

c

)
= r(p)φ = lz. (7)

We also see that the canonical momentum pφ can be interpreted as the z component of the
canonical angular momentum (3), so lz is also a constant of the motion.

For completeness, we verify that dlz/dt = 0 using the Lorentz force law,

dP

dt
= e

(
E +

v

c
×B

)
= e

(
−∇V − 1

c

∂A

∂t
+

v

c
× (∇×A)

)
. (8)

We begin with the ordinary angular momentum L = r × P, and consider the z component
of its time derivative:

dLz

dt
=

d(r × P)z

dt
=

(
r × dP

dt

)
z

= r

(
dP

dt

)
φ

. (9)

From eq. (8) we have, since ∂V/∂φ = ∂Ar/∂φ = ∂Az/∂φ = 0,(
dP

dt

)
φ

= −e

c

(
∂Aφ

∂t
+

ṙ

r

∂(rAφ)

∂r
+ ż

∂Aφ

∂z

)
= − e

cr

(
∂(rAφ)

∂t
+ ṙ

∂(rAφ)

∂r
+ ż

∂(rAφ)

∂z

)

= − e

cr

d(rAφ)

dt
, (10)

where d
dt

when applied to a field such as the vector potential A is the convective derivative
associated with the moving particle.

Noting that P = γm(ṙr̂ + rφ̇φ̂ + żẑ) and ˙̂r = φ̇φ̂, we also find,(
dP

dt

)
φ

=
dPφ

dt
+ φ̇Pr =

d(γmrφ̇)

dt
+ γmṙφ̇ =

1

r

d(γmr2φ̇)

dt
=

1

r

d(rPφ)

dt
. (11)

Combining eqs. (9)-(11), we have,

dLz

dt
=

d(rPφ)

dt
= −e

c

d(rAφ)

dt
. (12)

Hence,
d

dt

[
r
(
Pφ +

e

c
Aφ

)]
=

dlz
dt

=
dpφ

dt
= 0, (13)

as found by the Lagrangian method as well.

2Note that the definition (7) of the canonical momentum pφ leads to the awkward result that pφ = r(p)φ,
where (p)φ is the φ component of the canonical momentum vector p of eq. (2).
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2.2 The Paraxial Approximation

We now turn our attention to the question of lenslike character of a solenoid magnet as a
charged particle moves from a region of uniform field to zero field, or vice versa.

Inside a uniform solenoidal magnetic field B = Bẑ, the trajectory of the particle is a helix
(whose axis is in general at some nonzero radius r0 from the magnetic axis). The radius R
of the helix can be obtained from F = Ma = ev/c×B using the relativistic mass M = γm.
The projection of the motion onto a plane perpendicular to the magnetic axis is a circle of
radius R and the projected velocity is v⊥. Hence,

γmv2
⊥

R
= e

v⊥
c

B, (14)

so that,

R =
cP⊥
eB

, (15)

where P⊥ = γmv⊥ is the transverse momentum of the particle. For a particle whose average
velocity is in the +z direction, the sense of rotation around the helix is in the −φ̂ direc-
tion (Lenz’ law). The angular frequency ω of the rotation (called the Larmor or cyclotron
frequency) also follows from eq. (14),

ω =
v⊥
R

=
eB

γmc
. (16)

If the solenoid magnet has length L, then the time t required for the particle to traverse
the magnet is given by,

t =
L

vz
=

L

Pz/γm
=

γmL

P cos θ
, (17)

where θ is the production angle of the particle with respect to the z axis. Hence, the
trajectory of the particle rotates about the axis of the helix by azimuthal angle φh as the
particle traverses the magnet, where,

φh = ω t =
eB

γmc
· γmL

P cos θ
=

eBL

cP cos θ
. (18)

There is a unique value for φh only for small production angles (θ � 1), which is called the
paraxial regime:

φh ≈ eB

cP
L =

L

λ
, (paraxial approximation, θ � 1), (19)

where we define the (reduced) Larmor wavelength of the particle’s motion to be,

λ ≡ cP

eB
. (20)

In the paraxial approximation the magnetic force that bends the particle’s trajectory into
a helix is a weak effect, in that it depends on the product of the small transverse velocity
v⊥ = v sin θ � v and the axial field B.
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2.3 The Impulse Approximation

As the trajectory crosses the fringe field of the solenoid, the axial field drops rapidly from B
to zero (or rises rapidly from zero to B). In this region there must be a radial component
to the magnetic field, according to the Maxwell equation,

0 = ∇ · B =
1

r

∂(rBr)

r
+

∂Bz

∂z
, (21)

so that,

Br ≈ −r

2

∂Bz

∂z
(22)

(as also readily deduced by applying Gauss’ law to a “pillbox” of radius r and thickness dz).
Although the radial component Br of the magnetic field is small, it couples to the large axial
velocity vz to give a force Fφ = dPφ/dt in the azimuthal direction that is not negligible. We
can write,

dPφ

dz
=

1

vz

dPφ

dt
=

1

vz

evzBr

c
≈ −er

2c

∂Bz

∂z
(23)

Hence, the change ΔPφ in the azimuthal momentum of the particle as it crosses the fringe
field is,

ΔPφ ≈ −erΔBz

2c
=

erΔB

2c
, (24)

since ΔBz = −B at the axial field falls from B to zero.
The impulse approximation is that during the particle’s passage through the fringe

field we can neglect the change in its momentum due to coupling with the axial magnetic
field. We only consider the azimuthal kick (24). Thus,

Pr,out = Pr,in, Pφ,out = Pφ,in +
erB

2c
, Pz,out = Pz,in (impulse approximation).

(25)
Furthermore, we neglect the change in the transverse coordinates of the particle as it passes
through the fringe field.

rout = rin, φout = φin (impulse approximation). (26)

We can connect the impulse approximation with conservation of canonical angular mo-
mentum by noting that a solenoid magnet with (uniform) field B = Bẑ has vector potential,

A = Aφφ̂ =
rB

2
φ̂. (27)

To see this, recall that B = ∇× A implies that the integral of the vector potential around
a loop is equal to the magnetic flux through the loop; hence, 2πrAφ = πr2B.

The z component of the canonical angular momentum (which is equal to the azimuthal
component of the canonical momentum pφ),

lz = pφ = r(Pφ + eAφ/c) = r(Pφ + erB/2c), (28)
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is a constant of the motion for a particle in a solenoid magnet. Hence, we see that the
simplified impulse approximation that rout = rin plus conservation of canonical angular
momentum implies the form (25).

Additionally, we note that particles which are created on the magnetic axis have lz = 0,
whether they are created inside or outside the magnetic field. As a consequence, whenever
such a particle is outside the magnetic field region it has Pφ = 0. If it has passed through
a region of solenoidal magnetic field, the azimuthal kicks at the entrance and exit cancel
exactly. This results does not depend on the impulse approximation, as it is deduced directly
from conservation of canonical angular momentum.

2.4 Particle Source Outside the Magnet

We consider a solenoid magnet whose axis is the z axis with field B = Bẑ for 0 < z < L.
A particle of momentum P and charge e is emitted at polar angle θ1 � 1 from a (point)
source at (x, y, z) = (0, 0,−d1), and so arrives at the entrance of the magnet with spatial
coordinates (r, φ, z) ≈ (r1 = d1θ1, 0, 0) in the small angle (paraxial) approximation, and with
momentum (Pr, Pφ, Pz) ≈ (Pr1 , 0, P ), where,

Pr1 = Pθ1. (29)

The projection of the particle’s trajectory onto the x-y plane is shown in Fig. 1.
The fringe field at the entrance of the solenoid gives the particle an azimuthal kick

resulting in momentum,

Pφ1
= −eBr1

2c
= −eBd1θ1

2c
, (30)

according to eq. (25), where the magnetic field is B = Bẑ inside the solenoid. The transverse
momentum P⊥ of the particle inside the magnet is therefore,

P⊥ =
√

P 2
r1

+ P 2
φ1

=
eBr1

2c

√
1 +

(
2cP

eBd1

)2

=
eBr1

2c

√
1 +

(
2λ

d1

)2

=
eBR

c
, (31)

where R is the radius of the helical trajectory of the particle inside the solenoid, recalling
eq. (15). We also can write,

r1 = 2R cos α, (32)

where the angle α, shown in Fig. 1, is related by,

tan α =
Pr1∣∣Pφ1

∣∣ =
2cP

eBd1
=

2λ

d1
, (33)

which is independent of the production angle θ1 in the paraxial approximation.
As the particle traverses length L of the solenoid, its trajectory rotates by azimuthal

angle,

φh = −eBL

cP
= −L

λ
(34)

about the axis of the helix. At the exit of the solenoid the particle is at (r2, φ, L) in cylindrical
coordinates centered on the axis of the magnet (rather than on the axis of the helix), as shown
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Figure 1: Geometry of the helical trajectory of a particle of total momentum
P that enters a solenoid magnet at (r, φ, z) = (r1 = d1θ1, 0, 0) with radial
momentum Pr1 = Pθ1. The fringe field at the entrance of the solenoid gives
the particle an azimuthal kick resulting in momentum Pφ1

= −eBr1/2c, where
the magnetic field is B = Bẑ inside the solenoid. The helix has radius R =
cP⊥/eB. At the exit of the solenoid the particle is at (r2, φ, L) where φ =
−eBL/2cP = φh/2; the azimuthal rotation of the particle’s trajectory about
the magnetic axis is one half that about the axis of the helix.

in Fig. 1. By the well-known geometrical relation that the angle subtended by an arc on a
circle as viewed from another point on that circle is one half the angle subtended by that
arc from the center of the circle, we have that,3

φ =
φh

2
= −eBL

2cP
= − L

2λ
. (35)

The radial coordinate of the particle at the exit of the solenoid is,

r2 = 2R cos β, (36)

3The geometrical relation (35) has the consequence that in a frame that rotates about the magnetic
axis at half the Larmor frequency (16), the particle’s trajectory is simple harmonic motion in a plane that
contains the magnetic axis [4]. However, we do not pursue this insight here.
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where angle β is given by,

β = |φ| − α =
L

2λ
− tan−1

(
2λ

d1

)
. (37)

When the particle is at the exit of the solenoid, but still inside it, the transverse mo-
mentum vector P⊥2 makes angle β to the unit vector φ̂, as shown in Fig. 1. The radial
momentum of the particle Pr2 at the exit of the magnet is therefore,

Pr2 = −P⊥ sinβ = −P⊥
r2

2R
tanβ = −eBr2

2c

tan L
2λ

− 2λ
d1

1 + 2λ
d1

tan L
2λ

, (38)

using eqs. (31) and (36), while the azimuthal component Pφ2
obeys,

Pφ2
= −P⊥ cosβ = −eBr2

2c
. (39)

As the particle exits the magnet, the radial component of its transverse momentum
remains at the value of eq. (38) in the impulse approximation, while the azimuthal component
increases by eBr2/2c over the value of eq. (39) and hence vanishes, as expected since the
canonical angular momentum is zero.

Once the particle has exited the magnet its transverse momentum is purely radial, with
a value proportional to the radial coordinate r2 at the exit of the magnet. This is lens-like
behavior, in that the particle will then cross the magnetic axis at distance d2 from the exit
of the magnet, where,

r2

d2
= θ2 =

Pr2

P
. (40)

and so,

d2 =
2cP

eB tan β
= 2λ

1 + 2λ
d1

tan L
2λ

tan L
2λ

− 2λ
d1

=
fd1

d1 − f

(
1 +

2λ

d1
tan

L

2λ

)
, (41)

where,

f =
2λ

tan L
2λ

. (42)

When distance d2 is positive the solenoid acts as a (thick) focusing lens.
For the special cases of point-to-parallel focusing (d2 → ∞) and parallel-to-point focusing

(d1 → ∞), the solenoid magnet has focal length f given by eq. (42).
If (2λ/d1) tan(L/2λ) � 1 then the object distance d1 and the image distance d2 obey the

lens formula,
1

d1
+

1

d2
=

1

f

(
tan

L

2λ
� d1

2λ

)
. (43)

If in addition the length L of the solenoid is small compared to the Larmor wavelength
λ the solenoid can be called a thin lens, for which,

f =
4λ2

L
(thin lens : L � λ, L � d1). (44)

8



This weakly focusing limit is, however, seldom achieved in practical applications of solenoid
magnets as focusing elements.

The results (41)-(44) for thick- and thin-lens focusing can be utilized in a transfer-matrix
description of particle transport through magnetic systems [5].

2.5 Particle Source Inside the Magnet

The case of a source of particles inside the solenoid magnet, say at z = 0, can be treated as
a special case of the analysis in sec. 2.4 in which d1 = r1 = 0. The angle α shown in Fig. 1
is π/2 in this case, so that angle β is,

β =
L

2λ
− π

2
. (45)

The radial coordinate of the particle at the exit of the magnet is,

r2 = 2R cos β = 2R sin
L

2λ
, (46)

and the image distance d2 follows from eq. (41) as,

d2 =
2cP

eB tan β
= −2λ tan

L

2λ
. (47)

The radial momentum at the exit of the magnet is,

Pr2 = −P⊥ sin β = −eBR

c

r2

2R
tan β =

eBr2

2c
cot

L

2λ
. (48)

according to eqs. (38) and (45).
This is lens-like behavior (Pr2 ∝ r2) for any length L of the solenoid, with L = nπλ being

the boundary between focusing and defocusing.
For the special case that L = 2nπλ we have d2 = r2 = 0, corresponding to an image of

the source occuring at the exit of the magnet.
Of particular interest here is the special case that L = (2n + 1)πλ, for which d2 = ∞,

Pr2 = 0, and we have point-to-parallel focusing. From Fig. 1 and eq. (48) we see that the
condition for point-to-parallel focusing of a source inside the solenoid is that the particle has
completed an odd number of half turns on its helical trajectory when it reaches the end of
the solenoid. In this case we can say that the focal length of the solenoid lens is just the
length L,

f = L = (2n + 1)π
cP

eB
(point-to-parallel focus, source inside solenoid). (49)

2.5.1 Neutrino Horn: Point-to-Parallel Focus, L = (2n + 1)πcP/eB

A solenoid magnet provides point-to-parallel focusing for particles produced inside the mag-
net, on its axis, with a discrete set of momenta Pn given by,

Pn =
P0

2n + 1
, (n = 0, 1, 2, ....) where P0 =

eBL

πc
. (50)
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Particles with other momenta are not brought into parallelism, so that a “beam” formed
by drifting particles that emerge from the solenoid will be quasimonochromatic with the
sequence of momenta given in eq. (50). Figure 2 illustrates trajectories for particles of
momenta P0 and 3P0 in a solenoid magnet.

Figure 2: Concept of a neutrino horn based on solenoid focusing. The pion
production target is inside the uniform field region of the solenoid. The fo-
cusing effects of the fringe field at the exit of the magnet (at distance L from
the target) act as ideal thin lens of focal length L for a discrete set of particle
momenta, given in eq. (50).

Such a sequence of momenta occurs in the phenomenon of neutrino oscillations over a
flight path l. As is well, known, in the approximation of pure two-neutrino mixing, the
probability that neutrino type (mass eigenstate) i of energy E = P appears are neutrino
type j after traversing distance l is given by,

Prob(i → j) ∝ sin2
ΔM2

ijl

2E
, (51)

where ΔMij = Mi −Mj is the difference in the masses of the two neutrino types. Hence, for
a fixed drift distance l, the probability of neutrino type i appearing as type j is maximal for
the sequence of neutrino momenta (energy),

Pn =
P0

2n + 1
, (n = 0, 1, 2, ....) where P0 =

ΔM2
ijl

π
. (52)

Thus a solenoid magnet could be very useful in preparing a neutrino beam with a sequence
of momenta such that all oscillation effects are maximal. The potential advantage of such a
beam for the study of CP violation in neutrino oscillations has been pointed out by Marciano
[6], and elaborated upon in [7].

Of course, neutrinos are neutral, so that a solenoid magnet cannot directly affect their
trajectories. Rather, the solenoid magnet would be used to focus π± particles that are
produced in the interaction of a proton beam with a nuclear target that is placed on the axis
inside the magnet. The length l of the magnet should be short enough that most pions of
interest exit the magnet before decaying into neutrinos, according to,

π+ → μ+νμ, π− → μ−ν̄μ. (53)
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Because of the low “Q” value of this decay, the direction of the neutrinos is very close to
that of the pions, provided that latter have energies greater than a few hundred MeV. The
forward-going neutrinos carry about 4/9 of their parent pion momentum, so the solenoid
system should be chosen with a momentum P0,π equal to 9/4 of the highest desired neutrino
momentum at which the oscillation probability is maximal, i.e.,

P0,π ≈ 9

4
P0,ν . (54)

As implied by eq. (53), the solenoid-focused beam would contain both muon neutrinos
and muon antineutrinos, in roughly equal numbers. This has the advantage to studies could
be made simultaneously with both neutrino and antineutrino beams. However, for the study
of CP violation it would be necessary to identify whether each interactions was due to a
neutrino or an antineutrino. This identification must be provided by the detector in which
the neutrino interacts. If the neutrinos oscillate into electron neutrinos or antineutrinos
before they interact in a the detector, the latter must distinguish showers of electrons from
positrons. This difficult experimental challenge can likely only be met by a magnetized liquid
argon detector [8, 9, 10].

When studying the oscillation of muon neutrinos into electron neutrinos, the presence of
electron neutrinos in the beam constitutes the limiting background. Electron neutrinos are
present in the beam due to the 3-body decay of the muons from pion decay,

π+ → μ+νμ, μ+ → e+νeν̄μ, π− → μ−ν̄μ, μ− → e−ν̄eνμ. (55)

The background of electron neutrinos, compared to the flux of muon neutrinos at a particular
energy, is suppressed when the beam contains only a narrow range of momenta of the parent
pions. This occurs because the muon neutrinos from the pion decay then have typically
higher momentum that the electron neutrinos from the related muon decay. Hence, the
solenoid-focused neutrino beam, with its quasi line spectrum of energies will have lower
electron neutrino content, at least for highest-energy neutrino “lines”, compared to a wide-
band neutrino beam.

A final advantage of the solenoid-focused beam is that the magnetic elements are farther
removed transversely from the pion production target, and so can be made more radiation
resistant to intense proton fluxes than is the case for more conventional toroid-focused neu-
trino “horns”. Further, the relatively open geometry of the solenoid lens will permit use of
a liquid-metal target, as needed if the proton beam has several megawatts of power [11].

The author thanks Ron Davidson for the demonstration that conservation of the canonical
momentum pφ follows from the Lorentz force law.
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