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1 Problem

Deduce the vector potential in the so-called Poincaré gauge for a (static) solenoid magnet of
finite length that is encased in a shell of high permeability such that the external magnetic
field is negligible.

2 Solution

This problem is an exercise to evaluate the vector potential in the so-called Poincaré gauge
[1] in a simple example.

For examples with axial symmetry and no azimuthal magnetic field, the vector poten-
tial can only have an azimuthal component Aφ(r, z).1 Then, Stokes theorem applied to a
disk of radius r tells us that Aφ(r, z) = Φ(r, z)/2πr where the magnetic flux is Φ(r, z) =∫ r

0
2πr dr Bz(r, z), which provides a more direct method of calculation than that explored

in sec. 2.2 below. This relation must be obeyed by the Poincaré potential, so changing the
origin must have no effect on this potential, as confirmed in sec. 2.2.1.

2.1 Infinite Solenoid

An infinite solenoid with uniform, static magnetic field B0 ẑ within radius R about the z-
axis, and zero magnetic exterior field, is the curl of a vector potential A that has only an
azimuthal component in cylindrical coordinates (r, φ, z),2

Aφ =
B0

2

⎧⎨
⎩

r (r < R),

R2/r (r > R).
(1)

This potential is irrotational (∇ ·A = 0) and so is the Coulomb gauge potential (as well as
that in the Lorenz gauge, the Hamiltonian gauge and the Poincaré gauge [1]. The magnetic
field (and the potential) are generated by azimuthal surface currents at radius R.

In anticipation of sec. 2.2, we can also consider an infinite solenoid for which the magnetic
flux is returned in the region R < r < R + d. In this case, the magnetic field is purely axial,

1The vector potential could include a constant field A0, which is excluded if we add the additional
constraint that the potential must vanish at infinity.

2In this note, the origin of the coordinate system is always take to lie on the axis of the solenoid. See [2]
for the case when the origin is outside the solenoid.
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with,

Bz = B0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 (r < R),

−R2/[(R + d)2 − R2] (R < r < R + d),

0 (r > R + d).

(2)

This field configuration can be generated by appropriate surface currents at radius R and
R + d. An azimuthal vector potential for this field is,

Aφ =
B0

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r (r < R),

R2[(R + d)2 − r2]/r[(R + d)2 − R2] (R < r < R + d),

0 r > (R + d).

(3)

2.2 Finite Solenoid

A finite solenoid of length 2L and radius R can be encased in a shell of thickness d � L, R
of a high permeability material such that to a good approximation the magnetic field is
uniform in the cavity defined by the shell and zero exterior to it. The field in the material
of the shell can be approximated by simple forms that obey ∇ · B = 0 outside the two tori
(R < r < R + d, L < |z| < L + d, where I have no analytic expression for it. The following
approximation should be good for all space outside a distance d from these tori,

Bz(|z| < L) ≈ B0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 (r < R),

−R2/[(R + d)2 −R2] (R < r < R + d),

0 (r > R + d),

Bz(L < |z| < L + d) ≈ B0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + (L − |z|)/d (r < R),

not specified (R < r < R + d),

0 (r > R + d),

Bz(|z| > L + d) ≈ 0, (4)

and,

Br(|z| < L) ≈ 0,

Br(L < |z| < L + d) ≈ B0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

±r/2d (r < R),

not specified (R < r < R + d),

0 (r > R + d),

Br(|z| > L + d) ≈ 0. (5)

The currents that generate this field follow from the fourth Maxwell equation, J =
∇ × B/μ0, and are purely azimuthal in view of the azimuthal symmetry of B. From these
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the vector potential could be calculated in the Coulomb gauge, which is identical to the
potential in the Lorenz gauge and in the Hamiltonian gauge (where the scalar potential V is
zero; see sec. 8 of [1]) for static examples with zero charge density, such as the present case.

Here, we estimate the vector potential in the so-called Poincaré gauge (see sec. 9A of [1]
and [3, 4]),3 where,

V (x, t) = −x ·
∫ 1

0

duE(ux, t), A(x, t) = −x×
∫ 1

0

u duB(ux, t). (6)

In examples like the present with zero charge density the Poincaré gauge scalar potential is
zero. The divergence of the Poincaré gauge vector potential is,

∇ · A = x ·
∫ 1

0

u du∇ × B(ux, t) = x ·
∫ 1

0

u du

(
μ0J(ux, t) +

1

c2

∂E(ux, t)

∂t

)
. (7)

In static examples with only azimuthal currents we have that ∇ · A = 0 in the Poincaré
gauge, so the Poincaré vector potential in the present case is the same as that in the Coulomb,
Hamiltonian and Lorenz gauges. It is simplest to calculate this potential using eq. (6), which
involves integration along rays emanating from the origin. Only if that ray comes close to
the tori where the field B is not specified in eqs. (4)-(5) will the calculation be a poor
approximation.

The vector potential is the same as that of eq. (3) for points inside the solenoid, inside
the material of the shell at R < r < R + d, and outside the shell in the central region where
|z| /r < L/R. In the forward truncated cone where z/r > L/R and also z > L + d, we have
that,

Iz =

∫ 1

0

u duBz(ux) ≈
∫ L/z

0

u duB0 +

∫ (L+d)/z

L/z

u duB0

(
1 +

L − uz

d

)

=
B0

6

3L2 + 3dL + d2

z2
, (8)

Iφ = 0, (9)

Ir =

∫ 1

0

u duBr(ux) ≈
∫ (L+d)/z

L/z

u du
B0ur

2d
=

B0r(3L
2 + 3dL + d2)

6z3
. (10)

The vector potential has only the azimuthal component,

Aφ = rIz − zIr ≈ 0, (11)

and so the magnetic field in the forward cone is zero. A similar calculation shows that the
magnetic field in the backward truncated cone is zero as well.

2.2.1 Effect of a Change of Origin

We see from the definition (6) of the Poincaré potentials that they are affected by the choice
of origin of the coordinate system. Consider the case that the center of the solenoid is at

3The Poincaré gauge is also called the multipolar gauge [5].
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z0 > L + d, such that the solenoid and the permeable shall are entirely at z > 0. Then,
the potential can be nonzero only for z > z0 − L − d and inside the cone of half angle
tan−1[R/(z0 − L − d] about the positive z-axis.

For a point inside the solenoid we now have that,

Iz =

∫ 1

0

u duBz(ux) ≈
∫ 1

(z0−L)/z

u duB0 +

∫ (z0−L)/z

(z0−L−d)/z

u duB0
uz − z0 + L + d

d

=
B0

6

3z2 − 3(z0 − L)2 + 3d(z0 − L) − d2

z2
, (12)

Iφ = 0, (13)

Ir =

∫ 1

0

u duBr(ux) ≈
∫ (z0−L)/z

(z0−L−d)/z

u du
−B0ur

2d
= −B0r

6

3(z0 − L)2 − 3(z0 − L)d + d2

z3
.(14)

The vector potential has only the azimuthal component,

Aφ = rIz − zIr ≈ B0r

2
, (15)

as when the origin was at the center of the solenoid.
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