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1 Problem

Deduce an expression for a static magnetic field B, and a corresponding vector potential A,
based on knowledge of the field on a closed surface surrounding the observation point.

2 Solution

This problem is a variation on so-called vector diffraction theory. For discussion of determi-
nation of the magnetic field based only on its value along an axis, see [1, 2].

We recall the formalism of Kottler [3, 4] for fields with time dependence e−iωt in vacuum,
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where n̂′ is the outward unit vector normal to surface S, r = |x − x′|, c is the speed of
light in vacuum, k = ω/c, and Gaussian units are employed. See the Appendix of [5] for
derivations and discussion of these forms.

For a region with no currents the magnetic field can be related to a vector potential that
follows from eq.(2 as,
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assuming that we can take the curl after performing the integrations. If E and B are zero
everywhere on the surface of a region then A is zero in its interior, according to eq. (3).
The prescription of eq. (3) cannot be extended to all of space since there must be currents
somewhere if B is nonzero.

If the bounding surface is a perfect conductor, then E(x′) × n̂′ = 0, and,
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where K is the surface current density. We recognize this as the (Lorenz-gauge) retarded
vector potential, assuming that all currents lie on the bounding surface.

In the static limit, ω = 0 = k, the electric field does not depend the current density J or
the magnetic field, and the magnetic field does not depend on the electric field. Noting that
∇′(1/r) = r̂/r2 = −∇(1/r), we obtain,
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, If there are no currents within the volume of integration, the static magnetic field there
can be deduced from the vector potential,
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recalling eq. (2). The example of a static, toroidal magnetic field (for which B = 0 outside
the torus but

∮
A · dl =

∫
B · dArea is nonzero for loops that link the torus) suggests that

eqs. (3) and (7) are restricted to simply connected regions.

2.1 Uniform Axial Field

As an example, consider a uniform axial field, B = B0 ẑ that is generated by azimuthal
currents about the z-axis. The associated vector potential has only the azimuthal component,
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in a cylindrical coordinate system (ρ, φ, z).
We take the point of observation to be (ρ, 0, 0). As the surface of integration for eq. (7)

we consider a cylinder of radius a > ρ with faces at −z1 and z2. Then, B × n̂′ = B0 φ̂ and,
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using 4.397.6 of [6]. A delicacy is our assumption that,∫ 2π
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for nonzero values of z. This integral clearly goes to zero for large z, and the calculation (9)
of Aφ must be independent of the values of z1 and z2.

2.2 Other Formulations

Section 14.3-4 of [7] gives a formalism by which B can be computed from knowledge of its
normal component, B · n̂, on elliptical cylindrical surfaces, and sec. 18.2 describes the use of
the tangential component B × n̂ on circular cylinders.1
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1The function a0(z) = a
(0)
0 (z) used in [2] is the same as C

[1]
0 (z) in [7].
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