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1 Problem

Deduce an expression for a static magnetic field B, and a corresponding vector potential A,
based on knowledge of the field on a closed surface surrounding the observation point.

2 Solution

This problem is a variation on so-called vector diffraction theory. For discussion of determi-
nation of the magnetic field based only on its value along an axis, see [1, 2].

We recall the formalism of Kottler [3, 4] for fields with time dependence e~ in vacuum,
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where n’ is the outward unit vector normal to surface S, r = |x — x|, ¢ is the speed of

light in vacuum, k = w/c, and Gaussian units are employed. See the Appendix of [5] for
derivations and discussion of these forms.

For a region with no currents the magnetic field can be related to a vector potential that
follows from eq.(2 as,
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assuming that we can take the curl after performing the integrations. If E and B are zero
everywhere on the surface of a region then A is zero in its interior, according to eq. (3).
The prescription of eq. (3) cannot be extended to all of space since there must be currents
somewhere if B is nonzero.

If the bounding surface is a perfect conductor, then E(x') x n' = 0, and,
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where K is the surface current density. We recognize this as the (Lorenz-gauge) retarded
vector potential, assuming that all currents lie on the bounding surface.

In the static limit, w = 0 = k, the electric field does not depend the current density J or
the magnetic field, and the magnetic field does not depend on the electric field. Noting that
V'(1/)r) =t/r? = =V(1/r), we obtain,
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, If there are no currents within the volume of integration, the static magnetic field there
can be deduced from the vector potential,
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recalling eq. (2). The example of a static, toroidal magnetic field (for which B = 0 outside
the torus but § A - dl = [ B - dArea is nonzero for loops that link the torus) suggests that
egs. (3) and (7) are restricted to simply connected regions.

2.1 Uniform Axial Field

As an example, consider a uniform axial field, B = Byz that is generated by azimuthal
currents about the z-axis. The associated vector potential has only the azimuthal component,
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in a cylindrical coordinate system (p, ¢, z).
We take the point of observation to be (p,0,0). As the surface of integration for eq. (7)

we consider a cylinder of radius a > p with faces at —z; and zo. Then, B x n’ = By ¢ and,

B
A¢:Afu— am/ 0089
\/z2+a2+p2—2apcosgb
_ aBy cosgbdqﬁ In Zo + /23 + a% + p2 — 2ap cos ¢
4 Jo —z21+ /22 + a2+ p? — 2apcos ¢

B 27
= % cos ¢ do {ln (zz+\/z§+a2+p2—2apcos¢)
7r

0

+In (z1 + \/z% + a? + p? —2apcos¢) —In (a® 4 p* — 2apcos ¢)

B ’ B
_ _abo Cos¢d¢ln(1+p__29(:os¢) P 07 9)
41 0 2

using 4.397.6 of [6]. A delicacy is our assumption that,
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for nonzero values of z. This integral clearly goes to zero for large z, and the calculation (9)
of Ay must be independent of the values of z; and 2.

2.2 Other Formulations

Section 14.3-4 of [7] gives a formalism by which B can be computed from knowledge of its
normal component, B - n, on elliptical cylindrical surfaces, and sec. 18.2 describes the use of
the tangential component B x n on circular cylinders.!
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!The function ag(z) = ay ' (z) used in [2] is the same as C’([Jl] (2) in [7].
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