Target Support Facility for a Solid Target Neutrino Production Facility

Phil Spampinato Joel Chesser Tony Gabriel Franz Gallmeier John Haines Dick Lillie Tom McManamy

May 17-19, 2000 Catalina Island, CA

A Conceptual Design for a Support Facility Was Developed for the Fermilab Study

- Graphite target
- Hybrid solenoid System (National High Magnetic Field Laboratory)
- Decay channel
- Nuclear shielding
- Radiation handling

May 17-19, 2000 Catalina Island, CA

<u>Outline</u>

- Overall facility
- Design requirements & assumptions
- Target analysis/design
- Decay channel
- Shielding
- Radiation handling
- Proposed R&D

May 17-19, 2000 Catalina Island, CA

Design Requirements/Assumptions

- 16 GeV, 4 MW beam on target
- Operating availability 2 x 10⁷ sec/yr (*therefore*, *life-limited components are modular*)
- Dose on hall floor <0.25 mr/h

Component	Expected Lifetime	Replacement Time
Target	3 mos	6 days
Target + Bitter Coil	6 mos	7 days
Target +Bitter Coil	1 yr	8 days
+ PBW		
PB Instrumentation	1 yr	5-7 days
Beam Dump	5 yrs	1.5 mos
High Field S/C	>20 yrs	9-12 mos
Coils		
Low Field S/C Coils	>20 yrs	9-12 mos

May 17-19, 2000 Catalina Island, CA

The Target Region is in a He-Atmosphere Vessel that Minimizes Air Activation and Target Evaporation

- Target: 1.5 cm diam x 80 cm length (*per Mokhov*)
- High field solenoid: 8T Bitter, 12T Ni₃Sn
- Low field: 1.25T NbTi
 - coils are arranged in 4 m common cryostats to selfreact magnetic forces
- Magnet shield: W & steel
- Bulk shield: 4.5 m steel & 2 m steel in decay channel

May 17-19, 2000 Catalina Island, CA

Target Region (cont.)

• A section through the target shows the arrangement of modules within modules

May 17-19, 2000 Catalina Island, CA

The Graphite Target is a Passively Cooled Rod-like Structure

- It is coaxial with the proton beam, but 50 milli-radians to the magnetic axis of the decay channel (*Mokhov*)
- Supported on graphite spokes
- Radiates to a watercooled stainless steel support tube (15 cm diam)

May 17-19, 2000 Catalina Island, CA

Target (cont.) - Stress

- Preliminary thermal and structural analyses were performed to address feasibility of the concept and identify key issues
- Per Mokhov's results, time-averaged power deposition (1.5 MW beam) = 35 KW
 - volumetric power deposition is 250 MW/m³ (assumed uniform along axis)
 - target surface temperature 1850^oC
 - temperature at center 1925^oC
 - thermal stress 5 MPa < 30 MPa

Target - Stress (cont.)

• If peak power distribution is 2X average, surface temperature = 2260°C, stress = 10 MPa

May 17-19, 2000 Catalina Island, CA

Target (cont.) - Sublimation

- Sublimation at these elevated temperatures in a perfect vacuum >> He; conservative estimate
- At 250 MW/m3, recession rate = $5 \mu m/d$

Target - Sublimation (cont.)

 at 2X the average power deposition, recession rate = 5 mm/d

May 17-19, 2000 Catalina Island, CA

Target (cont.) - Issues

- These results support the feasibility of a radiatively cooled graphite target, but also demonstrate the need for additional work to:
 - predict axial power deposition
 - determine temperature distribution with realistic modeling and radiation heat transfer
 - perform tests to determine sublimation rate in a He environment over a practical range of pressures

Target Issues (cont.)

- Other Issues
 - examine irradiation database for since radiation damage may be the life limiting mechanism
 - evaluate use C-C composites which incorporate carbon fibers within a graphite matrix
 - improved thermal-mechanical properties and perhaps increased resistance to irradiation damage
 - develop a detailed design concept for supporting the target in a water-cooled tube that allows free expansion of the target as it heats up

Decay Channel

- 50 m long, located under crane hall; contains twelve 4 m LF cryostats
- LF coils have 30 cm SS/water shield; beam dump at 5.5<Z<6.5 m
- 60 cm diam Ti window separates He from vacuum

May 17-19, 2000 Catalina Island, CA

Decay Channel (cont.)

May 17-19, 2000 Catalina Island, CA

Shielding

- Neutron, gamma, proton flux profiles in the target area/decay channel (to 16m) were generated to estimate dose levels and evaluate shield dimensions
- Criteria: 0.25 mr/h in crane hall with beam on; beam power: 4 MW
- MCNPX cylindrical model

Dose Levels In Target Area	Dose>1GeV	Dose<1GeV	Total Dose
	7.4515E+11	97505E+11	<u>1.7202E+12</u>
	(mrem/h)	(mrem/h)	(mrem/h)
Tunnel Segment	()	()	()
0.2 to 0.70	1 0005E+11	1 7095E+11	2 7099E+11
0.7 to 1.70	9 6226E+10	1.3606E+11	2 3228E+11
1.7 to 2.70	8 3777E+10	1 9958E+11	2 8335E+11
2.7 to 3.70	6.2515E+10	2 4726E+11	3 0977E+11
$\frac{1}{3}$ 7 to 4 70	44562E+10	2.2039E+11	2 6495E+11
4 7 to 5 70	3 3549E+10	$\frac{1}{3}$ 1250E+11	34605E+11
5.7 to 6.70	2.8647E+10	3 6626E+11	3 9491E+11
6.7 to 7.70	23574E+10	1 3264E+11	1 5621E+11
7 7 to 8 70	19190E+10	7.6736E+10	9 5926E+10
8 7 to 9 70	1 5758E+10	5 3156E+10	6 8914E+10
9.7 to 10.70	1.3255E+10	3.8942E+10	5 2196E+10
10.7 to 11.70	<u>1 1229E+10</u>	2.9572E+10	4.0801E+10
11.7 to 12.70	97006E+09	2.2883E+10	3 2584E+10
12 7 to 13 70	84020E+09	1.8354E+10	2.6756E+10
13.7 to 16.00	1.1923E+10	22099E+10	$\frac{1}{3}4022E+10$

May 17-19, 2000 Catalina Island, CA

Shielding (cont.)

Distance Downstream From					
	Target (m)				
3 to 5	5 to 7	7 to 9	9 to 11	11 to 13	13 to 15
Steel Thickness (ft) / Concrete Thickness					
	(ft)				
14.8/1.0	14.8/1.4	14.2/0.9	13.9/1.0	13.1/1.6	14.1/1.0
1 4 2 /2 0			110/44		
14.2/2.0	14.8/1.4	12.8/3.4	11.8/4.4	11.5/4.7	12.1/4.1
	3 to 5 14.8/1.0 14.2/2.0	Bistance D Target (m) 5 to 7 3 to 5 Steel Thick (ft) 14.8/1.0 14.8/1.4	Bistance Downstream Target (m) 3 to 5 5 to 7 7 to 9 Steel Thickness (ft) / (ft) 14.8/1.0 14.8/1.4 14.2/0.9 14.2/2.0 14.8/1.4 12.8/3.4	Distance Downstream From Target (m) 5 to 7 9 to 11 3 to 5 5 to 7 7 to 9 9 to 11 Steel Thickness (ft) / Concrete T (ft) 14.8/1.0 14.8/1.4 14.2/0.9 13.9/1.0 14.2/2.0 14.8/1.4 12.8/3.4 11.8/4.4	Distance Downstream From Target (m) Junch 100 <thjunch 100<="" th=""> Junch 100</thjunch>

Shield (cont.)

• A high neutron/gamma flux will be present along the length of the decay channel (and beyond !)

	Total Neutron Flux		Total Gamma Flux	
Segment	all protons	terminated p.	all protons	terminated p.
(cm to cm)	(n/cm**2/s)	(n/cm**2/s)	(g/cm**2/s)	$(g/cm^{**}2/s)$
target	9.6911e+12	9.6495e+12	2.9729e+13	2.9731e+13
20 to 70	1.8919e+12	1.8818e+12	4.7647e+12	4.7907e+12
70 to 170	1.5281e+12	1.5206e+12	3.1056e+12	3.1449e+12
170 to 270	2.0809e+12	2.0988e+12	3.3005e+12	3.3192e+12
270 to 370	2.5212e+12	2.4968e+12	3.7693e+12	3.7820e+12
370 to 470	2.2949e+12	2.0483e+12	3.4240e+12	3.3310e+12
470 to 570	3.1645e+12	1.1266e+12	3.7925e+12	2.4159e+12
570 to 670	3.6004e+12	5.4587e+11	4.5052e+12	1.5945e+12
670 to 770	1.4011e+12	4.7507e+11	2.3729e+12	1.2952e+12
770 to 870	7.9235e+11	4.7067e+11	1.5967e+12	1.1328e+12
870 to 970	5.3975e+11	3.8577e+11	1.1962e+12	9.2990e+11
970 to 1070	3.9134e+11	2.9575e+11	9.3197e+11	7.5742e+11
1070 to 1170	2.9506e+11	2.3312e+11	7.4797e+11	6.3161e+11
1170 to 1270	2.2796e+11	1.8900e+11	6.1290e+11	5.3764e+11
1270 to 1370	1.8210e+11	1.5578e+11	5.1870e+11	4.4537e+11
1370 to 1600	1.2125e+11	1.0064e+11	3.8147e+11	3.3290e+11

May 17-19, 2000 Catalina Island, CA

Crane Hall and Remote Handling

- Crane Hall
 - 12 m above floor level
 - 80 m length
 - -40 ton crane
 - bridge mounted manipulator
 - removable shield slabs

May 17-19, 2000 Catalina Island, CA

Crane Hall and Remote Handling (cont.)

- Hot Cell
 - 20 ton crane
 - bridge manipulat
 - wall manipulator
 - CCTV, ...

Component	Weight	Size (m)
	(lbs)	
HF Cryostat	72,500	1.5 dia x
		4.2
HF S/C Coil	18,000	1.5 dia x
		1.2
Tungsten Shield	44,000	1.0 dia x
Module		4.0
LF Cryostat/Steel	44,000	1.3 dia x
Shield		4.0
Steel Shield Slabs	72,000	0.4 x 1.0 x
		3.0
Vert. Steel Shield	28,000	0.6 x 1.2 x
Blocks		2.0

May 17-19, 2000 Catalina Island, CA

Various Mercury Targets Will Be Used in Upcoming SNS Tests at LANL

Axisymmetric Target

May 17-19, 2000 Catalina Island, CA

Proposed R&D

Near Term R&DTasks for the Graphite Target (1.5MWDesign)

- 1. As sess commercially available graphite-composite properties for candidate target materials.
- 2. Develop a neutronics model for heating distribution (energy dstribution) in the target.
- 3. Develop a neutronics model for heating distribution and multiple scattering effects in the proton beam window.
- 4. Develop a finite element model for temperature and stress distributions, and deflections
- 5. Develop a test plan, design and assemble equipment for sublimation tests under high temperature conditions in a heliumenvironment: assuming that test equipment is available, do benchmark tests in vacuum, exploratory tests would proceed tomeasure sublimation rate and determine the effect of He pressure and purity.
- 6. Do thermal shock tests using ATJ graphite, assessmaterial survivability.
- 7. Develop the design details for the radiatively cooled target, including rod supports, water-cooled support tube, utility connectors, and remote handling approach.

May 17-19, 2000 Catalina Island, CA

Proposed R&D (cont.)

Preliminary List of Additional (Longer Term) R&D Tasks

- Develop a full scale mock up of the target region (-120<Z<140 cm) using low cost materials; demonstrate access and remote handling for replacing the target and Bitter coil; assess downtime. (*Note: Robotic facilities and remote handling equipment in use by SNS are available at ORNL at no* cost.).
- Develop a proton beam window mock up; demonstrate remote removal of cooling and diagnostic connectors; demonstrate window replacement; assess downtime. (*Note: Robotic facilities and remote handling equipment in use by SNS are available at ORNL at no cost.*)
- 3. Develop a preliminary design of the target beam stop located at 5.5<Z<6.5 m).
- 4. Complete the sublimation tests under target operating conditions.
- 5. If a suitable carbon-carbon composite material is found that has insufficient irradiation data, test for neutron/gamma irradiation survivability at ORNLÕ High Flux Isotope Reactor.
- 6. Construct and test a full scale prototype target; assess the geometric integrity of the support structure and the target rod (fabrication and alignment issues); assess support schemes for graphite wire, silicon carbide, É, assess remote handling features.

May 17-19, 2000 Catalina Island, CA

Conclusions

- A concept design for the neutrino factory *target support facility* was completed
- Preliminary calculations demonstrate feasibility of using a passively cooled graphite target
- The facility arrangement is based on work done for the SNS
- A concept design for high field and low field solenoids demonstrates feasibility of resistive/superconducting magnets that meet field-on-axis requirements (NHMFL)
- Near term/longer term R&D is proposed to address thermal, mechanical, and radiation issues for graphite

May 17-19, 2000 Catalina Island, CA