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Compression of Beam Energy
Via Off-Axis Traversal of an RF Cavity

A $100 Misunderstanding?

1 Introduction

As a possible step in the cooling of the longitudinal phase space of the muon beams at a
muon collider, we consider the use of a simple RF cavity to compress the momentum, as
shown in Fig. 1. The cavity would be located at a point where the beam is dispersed in
momentum, i.e., where that momentum varies linearly with position along a transverse axis.
The beam would enter the cavity (passing through the wall!) near the outer edge of the
cavity where the electric field varies linearly with position. If the beam passes through the
cavity when the field is maximum the energy gain is a linear function of transverse position.
In principle a linear dispersion of the beam can be completely cancelled by this procedure.

The finite extent of the beam along its axis results in less than perfect compensation
of the dispersion. It also results in some growth of angles of beam particles relative to the
transverse axis of dispersion. This interchange of longitudinal for transverse phase volume
could be compensated by further transverse cooling of the beam.

R.B. Palmer notes that he once lost a $100 bet with E. Courant regarding schemes for
manipulation of longitudinal phase space. It remains to be seen whether the present proposal
is among the disfavored class.1

2 Details

2.1 Energy Compression

We suppose that the beam has been dispersed so that at location z = 0 along its path the
momentum p varies as

p = p0 + k(x− x̄), (1)

where p0 is the central momentum, the x-axis is the transverse axis of dispersion and x̄ is
the centroid of the beam at z = 0.

1A paper by Courant can be interpreted as casting doubt on whether the “rf wedge” can work.
http://puhep1.princeton.edu/~mcdonald/examples/accel/courant_pmp_257_66.pdf
We believe that Courant’s theorem does not apply because the energy increments provided by an rf cavity
cannot be described by a “linear” transformation in Courant’s sense.
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Figure 1: The muon beam passes through the RF cavity wall at a momentum
dispersion point that is well off the cavity axis.

An rf cavity is centered on (x, y, z) = (0, 0, 0). To simplify the calculations we suppose
the cavity is a rectangular box of extent a in x and y and length b along z. The cavity is
excited in the TE1,1,0 mode for which the fields are (in cgs units)

Ex = Ey = 0,

Ez = E0 cos
πx

a
cos

πy

a
cosωt,

Bx =
c

ω

π

a
E0 cos

πx

a
sin

πy

a
sinωt, (2)

By =
c

ω

π

a
E0 sin

πx

a
cos

πy

a
sinωt,

Bz = 0,

where E0 is the peak electric field, ω is the angular frequency and c is the speed of light.
We make the impulse approximation that the cavity fields affect the energy and mo-

menta of the beam particles but not their trajectories while they are within the cavity. The
trajectory of a typical beam particle can then be parametrized (within the cavity) as

x = x0 + βxct,
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y = y0 + βyct, (3)

z = z0 + βzct.

The particle is within the cavity during the interval

[tmin, tmax] =

[
− b

2βzc
− z0

βzc
,

b

2βzc
− z0

βzc

]
. (4)

The rate of energy gain on traversing the cavity is dU/dt = eE · v where e and v are the
charge and velocity of the particle. The energy gain is then

ΔU = eβzc
∫ tmax

tmin

Ezdt = eβzcE0

∫ tmax

tmin

cos
π(x0 + βxct)

a
cos

π(y0 + βyct)

a
cos ωt dt. (5)

We evaluate this integral in the approximation that y0 � a and z0 � b but that x0 is near
the outer edge of the cavity with a/2−x0 � a/2. We also suppose that the frequency of the
cavity is low enough that ωt � 1 while the particles are in the cavity. Finally, we suppose
that the beam is paraxial with βx � βz and βy � βz. We expand the sines and cosines and
keep terms to first order. In particular, sin(πx0/a) ≈ 1 while cos(πx0/a) ≈ π(a/2 − x0)/a.
Then

ΔU ≈ πeβzcE0

a

∫ tmax

tmin

(a/2 − x0 − βxct) cos ωt dt ≈ πeE0
b

a

(
a

2
− x0 + z0

βx

βz

)
. (6)

The third term in eq. (6) is of higher order than the first two.
The effect of the cavity on a particle of initial energy Ui is obtained after rewriting eq. (1)

as

Ui =
√

p2c2 + m2c4 =
√

[p0 + k(x0 − x̄)]2c2 + m2c4

≈ U0

√
1 + 2k(x0 − x̄)

p0c2

U2
0

≈ U0 + kβ0c(x0 − x̄), (7)

where U0 =
√

p2
0c

2 + m2c4 is the central energy and β0 = p0c/U0 and we suppose that the
initial momentum spread Δp/p0 is small. Combining eqs. (6) and (7), the final energy is

Uf = U0 + kβ0c(x0 − x̄) + πeE0
b

a

(
a

2
− x0 + z0

βx

βz

)
. (8)

The cavity field E0 should be chosen to satisfy

E0 =
a

b

kβ0c

πe
. (9)

In this case the final energy is

Uf = Ui + ΔU = U0 + πeE0
b

a

(
a

2
− x̄ + z0

βx

βz

)
. (10)
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The final energy is constant except for the term in z0, the longitudinal coordinate of the
particle relative to the center of the bunch.

The effect of the term in z0 is not necessarily bad. If the momentum dispersion is obtained
in, say, a 180◦ bending magnet the higher momentum particles travel longer paths and will
arrive at the rf cavity later than lower momentum particles. Hence z0 = −k′p for some
positive constant k′. If in addition there were a positive correlation of the average x-angle,
β̄x/β̄z, with energy then the energy kick in z0 would compress the beam in z as well.

2.2 Transverse Kicks

For particles with z0 �= 0 the cavity causes a small kick in the x-component of transverse
momentum. To see this we calculate

Δpx =
∫ tmax

tmin

Fxdt = −eβzc
∫ tmax

tmin

Bydt

= −πc

aω
eβzc

∫ tmax

tmin

sin
π(x0 + βxct)

a
cos

π(y0 + βyct)

a
sin ωt dt (11)

≈ −πc

aω
eβzc

∫ tmax

tmin

sinωt dt ≈ −πeE0
b

a

z0

βzc
,

using the Lorentz force law and eq. (3). Comparing with eq. (6) we see that Δpz = ΔU/βzc
and

Δpx

Δpz
≈ z0

a/2 − x0
. (12)

This could be troublesome if z0 is of the same order as a/2−x0. It appears desirable to use a
cavity large enough that the bunch length (≈ z0) is small compared to the distance a/2− x̄
of the beam from the outer edge of the cavity. Of course, we should maintain the condition
a/2 − x̄ � a/2 for the preceding analysis to hold.

The kick in the y-direction is negligible:

Δpy =
∫ tmax

tmin

Fydt = eβzc
∫ tmax

tmin

Bxdt

=
πc

aω
eβzc

∫ tmax

tmin

cos
π(x0 + βxct)

a
sin

π(y0 + βyct)

a
sinωt dt ≈ 0. (13)
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