
Princeton/μμ/98-17
K.T. McDonald

November 5, 1998
Updated Feb. 5, 2000

Comments on Ionization Cooling

1 Introduction

This note began in Oct. 1998 as a commentary on Sec. V of the Status Report [1], but
became a forum for a larger commentary on ionization cooling. The present version omits
the editorial remarks, and corrects an error in Sec. 5. Section 2 presents a series of general
comments on ionization cooling. Section 3 presents a derivation of analytic approximations
for transverse and longitudinal ionization cooling. Section 4 discusses the role of canonical
angular momentum in solenoid transport. Section 5 discusses the applications of the concept
of betatron oscillations to solenoids.

Shortly after these notes were written, related notes by Palmer and Fernow [2] we pre-
sented at the Jan. 1999 Vanderbilt Particle Accelerator School.

2 General Comments on Ionization Cooling

• Where do equations SR(24) and SR(26) come from?

These describe the rate of change with position of normalized transverse emittance εN

and of energy spread ΔE for a muon bunch of central energy E and Lorentz factors β
and γ traversing an absorber of radiation length LR while inside a confining channel
with local betatron parameter β⊥,

dεN

dz
=

εN

β2E

dE

dz
+

β⊥(13.6 MeV/c)2

2β3EmμLR

. SR(24)

d(ΔE)2

dz
= 2(ΔE)2 d

dE

dE0

dz
+

d(ΔE)2
straggling

dz
. SR(26).

[SR means Status Report. Equations without SR in front refer to the present paper. In
this note I follow the usual practice in high energy physics that the energy loss dE/dx
is negative; in the Status Report that quantity dE/ds is considered to be positive.]

Something close to these was given by Neuffer in 1983 [3], but Dave seems to draw
different conclusions from them than does Bob Palmer.

A partial version of these equations was given earlier by Skrinsky [4], who also drew
inferences from them closer to those of Neuffer than to Palmer.

These early works assumed that fairly high energy muons were being cooled, and so
approximated Eμ = Pμc.
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The earliest appearance of SR(24) that I have found is in two useful papers by Fernow
and Gallardo [5, 6]; however, the derivation there includes the phrase “it can be shown”.
I believe that SR(24) is meant to improve on earlier versions by being applicable for
muons of any β. A result somewhat like SR(24) appears in sec. 5.3 of [7].

Equation SR(26) seems to have first appeared in [8] by Neuffer, and differs from an
earlier version by a factor of 2 in the first term.

• Are equations SR(24) and SR(26) correct?

I give a detailed derivation of them in sec. 3 below, which provides some sense of the
approximations underlying these equations.

• Has a numerical study ever been performed with the purpose of verifying
equations SR(24) and SR(26)?

I think not. This might make a good introductory project for someone who wishes to
combine the insights of analytic and numerical calculations.

• Why don’t we try anymore to obtain longitudinal ionization cooling?

Both [3, 4] discuss longitudinal cooling before transverse cooling. They note that
the dE/dx curve has positive slope for muon momenta above about 400 MeV/c, so
longitudinal cooling might be possible here. Hence, they emphasize muon cooling at
momenta higher than this.

My answer to this question is contained in the next comment.

• Why are we now at momenta lower than 400 MeV/c in the cooling section?

One answer is: money. It costs more in rf systems to operate at higher energy,
since the process of cooling takes the beam energy away and replenishes it about 30
times. But, if we choose a parameter region in which cooling proves to be impossible
for physics reasons, the cost savings is illusory. [Plus, I will comment later that cost
optimization might well take us far from the present parameter set.]

I have thought of another answer, which I have never heard discussed, although it
is a variant of a remark by Palmer. We plan to replenish the lost beam energy with rf
cavities, which requires the beam to be bunched. The average velocity of this bunch
along the rf axis, z, must obey β̄z < 1. But if the bunch has large emittance, some
particles will have large angles. Even if these particles had β = 1, their longitudinal
velocity would be only βz = cos θz. To keep these particles in the bunch, we must have
β̄z ≤ cos θz,max.

A practical fact is needed here: what is a realistic θz,max? If we choose 30◦, then
we immediately find cos θz,max = 0.866 = β̄z, so the central γ = 2, and the central
momentum P̄μ = 182 MeV/c.

In sum, cooling of a beam with large angular spread ⇔ low central momen-
tum ⇒ must give up longitudinal ionization cooling (of the simplest sort).

Note that we have also demonstrated the important result that particles with large
angles must have higher momentum to stay within the bunch.
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Furthermore, there must by some kind of transverse confinement of the beam particles,
or they would wander off. In general, we expect that larger angle particles will have
trajectories with larger transverse amplitude. Hence, particles with large ampli-
tudes of transverse oscillation must have higher momentum to stay within
the bunch.

• Why not cool at even lower momentum? It might be easier to hold a large-
emittance bunch together if the highest momentum didn’t have to correspond to β
very close to 1.

We first look for an answer from eq. SR(24), from which we learn that there is an
equilibrium emittance below which one cannot cool (with a given apparatus), obtained
when SR(24) vanishes,

εN,min =
β⊥(13.6 MeV/c)2

2βmμ〈−dEμ/ds〉LR
. (1)

[This result appears in the Status Report as SR(25).] To be consistent with the notation
used in this Comment, I have added the minus sign to dE/ds.

The idea of an equilibrium emittance appeared already in [9].

It is claimed in [10] that the betatron function for a particle of charge e and longitudinal
momentum Pz in a solenoid with magnetic field Bz obeys,

β⊥,solenoid =
2cPz

eBz
. (2)

See sec. 5 below for discussion of this.

We learn 3 key things about transverse cooling from this one result,

1. The radiation length LR should be long. This is fairly obvious, and was noted by
Ado and Balbekov [9]. Liquid hydrogen is best.

2. The absorber should be placed at a low-β⊥ point. This follows also by noting
that the “heating” term in SR(24), due to multiple scattering, is less dangerous
if the particles’ angles are large, which occurs when the β⊥ is small.

This insight can be traced to Skrinsky [11].

Equation (2) reminds us that low-β⊥ requires strong magnetic fields.

3. β〈dEμ/ds〉 should be as big as possible. For β slightly less than 1, dEμ/ds ∝
1/β5/3. See Figure 23.1 of the particle data tables. Then, in the region of interest
to us, β(dEμ/ds) ∝ 1/β2/3, i.e., εN,min ∝ β2/3. Hence, it appears from SR(24)
that there might indeed be some advantage in going to lower β̄.

If the bunch is transported in a solenoid, eq. (2) indicates that an additional factor
of β̄ appears in the expression for εN,min, which reinforces the interest in lower β̄.

I don’t know the answer to the question of the optimum β̄. Could it actually be a
serious question?
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– Some guidance comes from eq. SR(26). For low β the first term becomes positive
and adds to the undesirable “heating” of straggling. The first term changes sign
at γβ = 4 (for hydrogen). This suggests that going lower may aggravate our
already difficult problem with longitudinal emittance.

In sec. 3.2.1, we show that the “heating” of (ΔE)2 varies as 1/β4 for low γ, which
is probably the most quantitative argument against use of very low β.

For β too low, particles with lower than average energy would just stop in the
absorber. It would be interesting to have a quantitative statement of where this
problem sets in.

– The money argument favors lower β.

– Lower β means lower γ, so the muons decay faster in the lab. This appears to favor
higher β. But the length of the rf cavities needed to maintain the energy vary as
γ (really γ − 1), so the decay loss is independent of γ to a first approximation.

• What is θx,max?

This question occurred in a previous comment, but deserves elaboration. I follow [10]
here.

[I am changing notation here: θx is the projection onto the x-z plane of what was called
θz earlier.]

Using the relation σθx =
√

ε/β⊥ =
√

εN/γββ⊥, our eq. (1) becomes,

σ2
θx,min

=
(13.6 MeV)2

2βE〈−dEμ/ds〉LR
. (3)

Suppose we are cooling a bunch with emittance εN = nεN,min. Then, σ2
θx

is n times
that given in eq. (3). To keep transport losses small, we will need to have angular
acceptance mσθx, where m >∼ 4. Together, we infer that the angular acceptance must
be,

θx,max = m

√
n(13.6 MeV)2

2βE〈−dEμ/ds〉LR
. (4)

For example, with muons of γ = 2, β = 0.866, E = 210 MeV, and liquid hydrogen
absorbers for which 〈−dEμ/ds〉 = 4.4 MeV g−1cm2, and LR = 61.3 g/cm2, we have,

θx,max = m
√

0.0019n = 0.35 radian, for n = m = 4. (5)

This angle is unusually large for particle beam transport, and emphasizes the technical
challenge of ionization cooling. We also see that it will be almost impossible to design
a single apparatus that cooled an initial emittance 10 times the minimum (1). Rather,
the cooling channel should consist of a sequence of sections i, with focusing strength,

β⊥,i =
β⊥,0

i
, (6)

with lengths chosen so that section i cools from 4εN,i,min(β⊥,i) to 2εN,i,min(β⊥,i) =
4εN,i+1,min(β⊥,i+1).
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• We should consider Robinson’s “law” of damping decrements [12].

A version of this appeared in [4], and another appeared in [13], but it hasn’t been
discussed much since [14] in 1994.

The idea is that if one pushes too hard on transverse cooling, one will inevitably be in
a situation where longitudinal heating becomes very severe.

Since I’ve never followed a derivation of this “law” before, I present one in sec. 3.3.
See also [15].

• We should consider frictional cooling.

However, I don’t have the reference for this.

• We should consider the problem of space-charge and wakefield effects.

In particular, has the work of Christine Celata appeared in referenceable form?

Are there any referenceable note on wakefield effects?

• Why do we use a solenoid channel to confine the muons during cooling (+
capture and phase rotation)?

This question seems to come up over and over as new people start thinking about a
Muon Collider. So, although the answer is relatively straightforward, it would be good
to include it. My version follows. See also [10, 17].

Equation (1) shows that the absorbers should be placed at a low-β⊥ point, i.e., where
the confining forces are as strong as possible. Between the absorbers we must have
accelerating cavities, whose transverse dimensions are relatively large. To keep costs
down, the confining forces should be weaker in the accelerating cavities. Hence, we
need a confining structure with a periodic variation in the strength of the confining
forces.

We also wish to transport with low losses a bunch with extremely large transverse
emittance, i.e., one with particles at large values of the transverse coordinates. Use
of a quadrupole channel to provide the confining forces would result in large numbers
of particles passing through the quadrupole fringe fields at large radii, leading to sig-
nificant interaction with the higher-order terms in the transport equations, and poor
transport efficiency. In contrast, a solenoid channel provides confining forces that are
essentially continuous in z and which are independent of radius. This permits effective
transport over the full aperture.

Of course we must still address the following:

• Why do we use alternating solenoids?

Bob’s recent note [16] is an important step toward understanding this question, and
should be referenced in the Status Report (after some technical oversights are fixed).

Indeed, on reading that note, I come to several conjectures beyond Bob’s conclusions.
These follow from two basic observations:
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– If we desire particles to have zero mechanical angular momentum after exiting
a solenoid, they must have zero canonical angular momentum when inside the
solenoid. (These angular momenta are measured with respect to the symmetry
axis of the magnetic field.)

– For a particle to have zero canonical angular momentum when inside a solenoid,
the trajectory must pass through the symmetry axis of the magnet.

The first observation follow from conservation of canonical (rather than mechanical)
angular momentum; the second is discussed in sec. 4 along with other related issues.

We draw several conclusions:

1. Note that if the primary target were entirely along the magnetic symmetry axis,
then all secondary particles would be produced with very low canonical angular
momentum. That is, we could arrange for the beam to start with the desired
special condition. Our task would then be to keep from generating canonical
angular momentum later.

2. Some canonical angular momentum is generated when the pion decays. (If the
pion decays at a point not on the magnetic symmetry axis, the neutrino carries
some angular momentum.)

3. If the muon passes through an absorber when its trajectory is away from the mag-
netic axis, is canonical angular momentum is changed. There is some probability
that the canonical angular momentum is “heated” even though the mechanical
transverse momentum is “cooled”. Hence, it is possible that more optimal cool-
ing of angular momentum would involve absorbers whose thickness decreases with
radius.

4. A speculation that might be worthy of simulation is that a cooling channel with
a single sign of the magnetic field could be designed that emphasizes keeping the
canonical angular momentum small.

5. If this is only partially successful, it might still be the case that a single reversal
of the magnetic field near the end of the channel would suffice.

• Shouldn’t we give more details as to the sophistication of the simulations?

For example, mention the recent efforts to understand tails of the multiple scattering
distribution. The present text could leave the impression we are still working in the
Gaussian approximation.

• What is the relation between the rf frequency and the emittance?

We have established that higher magnetic fields are needed to cool lower transverse
emittances. As I understand it, the rf frequency is related to the bunch length, which
is related to the longitudinal emittance.

Roughly, I expect that the rf frequency will increase as we move down the cooling
channel. Do we need to up the rf frequency every time we up the magnetic field?

6



I note that the two examples, VD and VE, use the same rf frequency while the field of
E is twice that of D, but no comment is made here about the broader issue.

In the first paragraph of sec. VG, I read “It should be pointed out that in the earlier
and later stages....” This sentence is very interesting. It not only should be pointed
out, it should be explained! Why does the bunch length grow in the “later stages”?
Later than what? The 31-T example is presented as the last stage of a Higgs factory.
Perhaps the bunch lengthening in “later” stages is a holdover from earlier designs in
which we skipped longitudinal emittance exchange near the end. I was never clear as
to how well motivated that choice was. Is it still active? Discussion is warranted!

• Are wedges the best way to deal with the problem of longitudinal/transverse
emittance exchange?

We now have separate simulations of 6-d cooling by a factor of 2 in 20 meters of an
alternating solenoid channel, and of exchange of longitudinal and transverse phase
space in a double bent solenoid section. Each of these requires rather particular phase-
space correlations for efficient operation.

As I understand it, a procedure for “matching” from one set of correlations to another
does not yet exist, or requires a very long distance (hence, significant cost in dollars
and in muon decay loss).

Further, as near as I can tell, any system involving wedges and momentum dispersion
in dipoles or bent solenoids requires separate cooling channels for positive and negative
muons. This doubles the cost of the cooling channel compared to that needed for one
sign. Since my estimate of the cost for a single cooling channel is a large fraction of
$1B, this is a major effect.

Hence, finding a new solution to the emittance-exchange problem is the
major issue in muon collider design in the near future.

But, the Status Report gives little indication that we are aware of this issue.

My conclusion is that some of the late studies of the FOFO scheme deserve further
investigation. I elaborate.

It has long been realized [3, 24] that longitudinal phase space could be damped by
passing higher-momentum particle through longer absorbers: i.e., use wedge absorbers
plus momentum dispersion.

We also realize that transverse cooling only works well if there is a reasonably strong
correlation between momentum and amplitude. That is, transverse cooling requires a
kind of momentum dispersion.

Hence, there appears to be a golden opportunity to use a requirement of transverse
cooling to solve a major problem of longitudinal cooling. Namely, use absorbers whose
thickness varies with radius to combine transverse cooling with continual longitudinal-
transverse emittance exchange.

This scheme has the major merit of working for both charges in a single cooling channel.
This is a billion dollar savings, if it can be realized.
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The hoped-for solution to the matching problem is not to match between two very
different sets of correlations, but to find a single set of correlations that permits ef-
fectively simultaneously transverse and longitudinal cooling (the latter via emittance
exchange rather than direct cooling).

Some time ago, Bob made a heroic effort to implement this notion. It seemed to me
that success was close, when a problem of longitudinal instabilities emerged. As I
understand it (there is no surviving documentation from this effort that I could find),
the infamous synchrobetatron coupling was too strong in the FOFO scheme – and the
whole idea was dropped.

It is far from obvious to me that the synchrobetatron problem had anything to do with
the use of variable thickness absorbers.

However, the use of variable thickness absorbers has its price. The transverse cooling
per meter will be less. But, the law of damping decrements advises us that any scheme
that, in effect, cools simultaneously in all 3 subspaces will cool more slowly in some of
those subspaces than a scheme that cools in some subspaces while heating in others.

It may well take twice as long to reduce the 6-d emittance by a factor of 2 with variable
thickness absorbers, compared to the present scheme. But, no bent solenoid sections
would be required, so the total length of the cooling channel would be about the same.
More rf acceleration will be required.

[Recall that rather general arguments based on angular acceptance and cooling effi-
ciency indicate that cooling apparatus of a given peak magnetic field and corresponding
rf frequency should be used for cooling only over a factor of 2 in 2-d transverse emit-
tance. Hence, a cooling “section” would be longer in the new scheme.]

The use of variable thickness absorbers might, however, aggravate the angular momen-
tum problem. There is a hint (sec. 4) that the angular momentum problem would be
better addressed if the absorbers were limited to small radii. This is a use of variable
thickness absorbers, but not in the manner needed for emittance exchange. For the
latter, the absorber must be thicker at larger radii, where the momenta are higher.

This may reinforce the need for the alternating solenoid scheme – which possibly is
overly powerful for the simple case of uniform absorbers.

Recall that Bob’s attempt to implement variable thickness absorbers took advantage of
the variation of the betatron function along the FOFO lattice, and (I think) absorbers
that were thickest on axis were placed that the high-β⊥ points, while “complementary”
absorbers that were thickest well off axis were placed at the low-β⊥ points. The latter
required absorbers inside the rf cavities. In that scheme, the absorbers were LiH, so
they were relatively compact. If we use liquid hydrogen absorbers, the rf cavities would
probably have to be split into two sections on either side of the low-β⊥ points.

While my particular conjecture as to how cooling studies might evolve is perhaps too
speculative for the Status Report, we should give more indication that we understand
the need for improved cooling scenarios.
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3 Derivation of the Cooling Equations

3.1 Transverse Cooling

I now attempt to derive SR(24).
The rms normalized 2-d transverse emittance in coordinates x and Px of a bunch of

particles moving along the z axis is related by,

m2c2ε2
N =

〈
x2
〉 〈

P 2
x

〉− 〈xPx〉2 . (7)

Consider the propagation of the bunch in the z direction through a thin absorber. In the
impulse approximation, the particles’ momenta change, but their transverse positions do
not. Hence, the rate of change of the ε2

N along z may be written,

2m2c2εN
dεN

dz
=
〈
x2
〉〈dP 2

x

dz

〉
− 2 〈xPx〉

〈
x
dPx

dz

〉
. (8)

3.1.1 〈xPx〉 = 0

If we ignore correlations such as 〈xPx〉, we obtain the simpler form,

2m2c2εN
dεN

dz
≈ 〈x2

〉〈dP 2
x

dz

〉
. (9)

We wish to relate this to energy loss and multiple scattering caused by the absorber. We
introduce the particle’s angle to the z axis in the x-z plane,

θx ≈ Px

Pz
≈ Px

P
, (10)

where the approximations suppose that Px and Py are much less than Pz . Then,

Px ≈ θxP. (11)

We also note that
cP = βE, and c2P 2 = E2 − (mμc

2)2, (12)

leading to,

dP 2 =
dE2

c2
and

dP

dE
=

E

c2P
=

1

v
. (13)

Thus,

dP 2
x

dz
≈ θ2

x

dP 2

dz
+ P 2 dθ2

x

dz
=

θ2
x

c2

dE2

dz
+ P 2dθ2

x

dz
= 2

θ2
xE

c2

dE

dz
+ P 2 dθ2

x

dz

= 2
P 2

x

β2E

dE

dz
+ P 2 dθ2

x

dz
. (14)

We average eq. (14) over the bunch, but suppose that we may replace β, E P by their
bunch averages. In effect, we are neglecting correlations between transverse momentum and
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total momentum. We have already noted in sec. 2 that the existence of such correlations is,
however, critical to the success of cooling. But for correlations that are “not too large”, we
proceed, 〈

dP 2
x

dz

〉
≈ 2

〈P 2
x 〉

β2E

dE

dz
+ 〈P 〉2

〈
dθ2

x

dz

〉
≈ 2

〈P 2
x 〉

β2E

dE

dz
+

(13.6 MeV/c)2

β2LR

, (15)

using the standard form for the rms projected multiple scattering (for example, (23.9) of
[19]), where LR is the radiation length of the absorber material.

When we insert eq. (15) into eq. (9), we find,

2m2c2εN
dεN

dz
≈ 2

〈x2〉 〈P 2
x 〉

β2E

dE

dz
+

〈x2〉 (13.6 MeV/c)2

β2LR

. (16)

In the first term on the right of eq. (16), the averages contain ε2
N according to eq. (7) with

the neglect of correlations. In the second term, we follow Neuffer and write,

〈
x2
〉

= εβ⊥ =
εNβ⊥
γβ

(17)

where ε is the rms 2-d geometric transverse emittance, and β⊥ is the value of the betatron
function of the transversely confining beam optics at the position of the absorber. Hence,

2m2c2εN
dεN

dz
≈ 2

(mc)2ε2
N

β2E

dE

dz
+

εNβ⊥(13.6 MeV/c)2

β3γLR

, (18)

and so,

dεN

dz
≈ εN

β2E

dE

dz
+

β⊥(13.6 MeV/c)2

2β3γ(mμc)2LR

=
εN

β2E

dE

dz
+

β⊥(13.6 MeV/c)2

2β3EmμLR

. (19)

This confirms SR(24) of the Status Report, with sufficient neglect of correlations.
A picky point: in my derivation (and in the notation of the Particle Data Group [19]),

dE/dz is negative. But in the notation of the Status Report, dE/ds is positive and is
called the energy loss. The notation of the Status Report, while nonstandard in the larger
community, was no doubt chosen so that the “cooling” term is easily identified by the minus
sign in front of it.

It is instructive to use approximate analytic expressions for dE/dz and LR so that the
two terms of eq. (19) are more readily compared. The Bethe formula [18] for dE/dz is given
as eq. (23.1) of [19],

dE

dz
≈ −4πr2

emec
2N0ρ

Z

A

(
1

β2 ln
2γ2β2mec

2

I
− 1

)
. (20)

Here, N0 is Avagadro’s number (per mole), ρ is the density of the absorber in, say, g/cm3, the
atomic “weight” A is in g/mole, and I is the ionization potential of the absorber material.
We have set the maximum kinetic energy imparted to an electron in a collision with a muon
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to 2γ2β2mec
2, which is valid for γme/mμ � 1, as holds in the muon cooling channel. We

have also neglected the density-effect term, which is significant only for γ >∼ 3.
A useful fit for the radiation length LR has been given as (23.19) of [19],

1

LR
= 4αr2

eN0ρ
Z(Z + 1)

A
ln

287√
Z

, (21)

where α is the fine-structure constant.
With eqs. (20-21), eq. (19) can also be written as,

dεN

dz
≈ 1

β2ELR

[
− πmec

2εN

α(Z + 1) ln 287√
Z

(
1

β2 ln
2γ2β2mec

2

I
− 1

)
+

β⊥(13.6 MeV/c)2

2βmμ

]
(22)

For example, with a hydrogen absorber we take I = 15 eV, and find,

dεN

dz
≈ 1

β2ELR

[
−19.2εN

(
12

β2 − 1

)
+

0.88β⊥
β

]
, (23)

where the value 12 holds for γβ ≈ 2. The minimum value of εN that can be achieved with
a hydrogen absorber at a location where the betatron function is β⊥ is then,

εN,min =
0.0038ββ⊥
1 − β2/12

. (24)

Equation (23) can be rewritten in terms of εN,min as,

1

εN

dεN

dz
≈ −230 MeV(1 − β2/12)

β4ELR

(
1 − εN,min

εN

)
. (25)

For example, with γ = 2, β = 0.866, E = 210 MeV, P = 182 MeV/c, then

1

εN

dεN

dz
≈ −1.8

LR

(
1 − εN,min

εN

)
. (26)

To cool εN from, say, 4εN,min to 2εN,min would require about 0.6LR ≈ 480 cm of liquid
hydrogen, using eq. (26) with 〈1 − εN,min/εN〉 ≈ 2/3. I believe ICOOL indicates that about
600 cm would be required.

3.1.2 〈xPx〉 �= 0

In this case, we also need the average 〈xdPx/dz〉, still in the impulse approximation, eq. (8).
From eq. (15), we can write,

dPx

dz
≈ Px

β2E

dE

dz
+

(13.6 MeV/c)2

2Pxβ
2LR

. (27)

The second term, however, is ill behaved as Px → 0. Ignoring this, we would then find,〈
x
dPx

dz

〉
≈ 〈xPx〉

β2E

dE

dz
+

〈
x

Px

〉
(13.6 MeV/c)2

2β2LR

. (28)
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For this to make physical sense, we must declare that 〈x/Px〉 = 0. This also can be justified
as follows. A nonzero correlation 〈xPx〉 in the initial particle distribution means that 〈Px〉
varies with x. After passing through the thin absorber, the Px are smeared by multiple
scattering, but at a given x, the 〈Px〉 remains unchanged, and so the correlation 〈xPX〉 is
unchanged by multiple scattering.

Hence, eq. (16) is now,

2m2c2εN
dεN

dz
≈ 2

(〈x2〉 〈P 2
x 〉 − 〈xPx〉2)
β2E

dE

dz
+

〈x2〉 (13.6 MeV/c)2

β2LR

= 2
(mc)2ε2

N

β2E

dE

dz
+

〈x2〉 (13.6 MeV/c)2

β2LR

, (29)

using eqs. (7-8). In the presence of a correlation 〈xPx〉, it would not be proper to use eq. (17).
So we would just write,

dεN

dz
≈ εN

β2E

dE

dz
+

〈x2〉 (13.6 MeV/c)2

2εNβ3EmLR

. (30)

However, without the simple relation eq. (17), we do not obtain as much insight from
this equation as we can from eq. (1), which holds when 〈xPx〉 = 0.

3.1.3 Thick Absorbers

Thus far we have assumed the absorber is thin, and made the impulse approximation that a
particle’s x (and y) are unchanged during passage through the absorber. The case of thick
absorbers has been considered by Juan and Rick in [6], with the general conclusion that if
the confining fields are “strong enough”, there is little qualitative change in the form of the
transverse cooling equation.

3.2 Longitudinal Cooling

The argument here is little different from that in [3].
In the thin absorber limit there is no change in z of a particle as it cross an absorber. So

it suffices to consider changes in Pz , or nearly equivalently, in E. More precisely, since the
central energy E0 is nonzero, we consider changes ΔE = E − E0 and desire an expression
for 〈d(ΔE)2/dz〉.

There are two effects to consider: the variation in the mean energy loss with particle
energy, and fluctuations about the mean. We calculate these separately, and add them in
quadrature. First, a particle of energy E that traverses an absorber of thickness δz has mean
energy loss δEmean given by,

δEmean =
dE

dz
δz ≈

(
dE0

dz
+ ΔE

d2E0

dEdz

)
δz. (31)

The change in ΔE is then,

δ(ΔE)mean ≈ ΔE
d2E0

dEdz
δz. (32)
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Hence,
d(ΔE)2

mean

dz
≈ 2(ΔE)2 d2E0

dEdz
, (33)

Second, we consider fluctuations in the energy loss in the absorber. To the first approx-
imation, it suffices to consider this only for the central energy E0. Using the nomenclature
“straggling” for this effect, we have an additional term.

d(ΔE)2
straggling

dz
. (34)

Combining this with eq. (33), we have,

d(ΔE)2

dz
≈ 2(ΔE)2 d

dE

dE0

dz
+

d(ΔE)2
straggling

dz
. (35)

This is eq. SR(25) of the Status Report, again noting that my dE/dz has the opposite sign
to that used there.

3.2.1 d(ΔE)2
straggling/dz

It is hard to find a crisp reference for the form of the energy straggling fluctuations. The
basic calculation is due to Bohr [20]. Our past reference has been to Fano [21], but this
paper is quite hard to read. It might be better to point to sec. 13.3 of [22], or at least to
add this reference. Neuffer [14] quotes the desired result as,

d(ΔE)2
straggling

dz
= 4π(remec

2)2N0
Z

A
ργ2(1 − β2/2) = 2π(remec

2)2N0
Z

A
ρ(γ2 + 1), (36)

to display the dependence on muon energy. This result applies only for “thick” absorbers,
which is reasonable for the muon collider where we take the energy away 30 times by ioniza-
tion loss, although each absorber is only about 5% of a radiation length.

When the muons are later accelerated, ΔE remains constant. Thus, we seek to minimize
ΔE and not ΔE/E. Hence, the undesirable “heating” due to straggling is minimized by
operating at the lowest possible γ, according to eq. (36).

For the record, I note that eq. (36) can be recast in a way that emphasizes the radiation
length LR of the absorber by using the fit (23.19) of [19] (given above as eq. (21)),

d(ΔE)2
straggling

dz
=

π(mec
2)2A(γ2 + 1)

2α(Z + 1)LR ln(287/
√

Z)
. (37)

Equation SR(25) of the Status Report could thus be written,

d(ΔE)2

dz
≈ 2(ΔE)2 d

dE

dE0

dz
+

π(mec
2)2(γ2 + 1)

2α(Z + 1)LR ln(287/
√

Z)
. (38)

A sense of the relative importance of the two terms in eq. SR(25) can be gotten from the
Bethe formula (20). With E = γmμc

2, the leading term in the derivative of eq. (20) with
respect to E is,

d

dE

dE

dz
≈ 8πr2

e

mec
2

mc2
N0

Z

A

ρ

γ3β4

[
ln

2γ2β2mec
2

I
− γ2

]
≈ 8πr2

e

mec
2

mμc2
N0

Z

A

ρ

γ3β4 (12 − γ2), (39)

13



where the final approximation assumes I ≈ 15 eV for the ionization potential of hydrogen.
(This puts the dE/dz minimum at γ =

√
12, which is a bit low.)

Then, recalling eq. (36), eq. (35) becomes,

d(ΔE)2

dz
≈ 2π(remec

2)2N0
Z

A
ρ

[
(ΔE)2

mec2mμc2

4(12 − γ2)

γ3β4 + (γ2 + 1)

]

≈ π(mec
2)2

2α(Z + 1) ln(287/
√

Z)LR

[
48(ΔE)2

mec2

(1 − γ2/12)

γ2β4E
+ (γ2 + 1)

]
. (40)

This form reveals that the heating due to the variation in dE/dz with energy is proportional
to 1/β4, which is perhaps the strongest argument against cooling at very low β.

One or the other versions of eq. (40) would be a useful addition to the Status Report.
For a hydrogen absorber, we can write eq. (40) as,

1

(ΔE)2

d(ΔE)2

dz
≈ 466 MeV(1 − γ2/12)

γ2β4ELR

(
1 +

1.1 (MeV)
2
γ3β4(γ2 + 1)

(1 − γ2/12)(ΔE)2

)
. (41)

For example, with γ = 2 (which is about the largest we can consider for transverse
cooling) and ΔE ≈ 10 MeV, the first term in eq. (41) is about twice the second, and,

1

(ΔE)2

d(ΔE)2

dz
≈ 1

LR
. (42)

Recalling the example at the end of sec. 3.1.1, the transverse emittance εN was estimated to
cool by a factor of 2 in 0.6LR. Equation (42) estimates that (ΔE)2 would grow by a factor
of 1.8 over the same distance.

It looks to me like there is no value of γ for which the approximation eq. (40) predicts
longitudinal ionization cooling. However, our approximation underestimates the slope of
dE/dz for γ > 3, due to our neglect of the density effect.

It is noteworthy that cooling (heating) scales as the radiation length with coefficients
near unity (for example, eqs. (26) and (42)). Perhaps we could say loosely that ionization
cooling is a manifestation of the very low energy tail of bremsstrahlung, and is in some sense
a form of radiative cooling. This suggests we can find other aspects of ionization cooling in
common with radiative cooling, as in the following section.

3.3 The Law of Damping Decrements

I read in sec. 8.2.3, p. 287 of [23] that Robinson [12] showed that for a process that damps
the 6-d emittance of a bunch, the sum of the damping decrements of all 3 2-d subemittances
is a constant. Robinson’s paper does not give a general “proof”, but an argument specific
to radiative damping. Has someone else given a more general argument?

In sec. 3.3.1, I look at momentum damping times (but don’t complete the argument),
and in sec. 3.3.2, I consider emittance damping times.
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3.3.1 Momentum Damping Times

We follow [4] here.
If we ignore the “heating” effects of multiple scattering and straggling, an interesting

relation between transverse and longitudinal “cooling” can be demonstrated.
In the first approximation, the effect of passage of a charged particle through an absorber

is to reduce the magnitude of a particle’s momentum P without changing its direction. That
is,

dP

dt
=

dP

dt
P̂. (43)

We note that,
dP

dt
=

dP

dE

dE

dz

dz

dt
=

vz

v

dE

dz
≈ dE

dz
, (44)

recalling eq. (13).
The transverse part of eq. (43) can now be written,

dP⊥
dt

=
dE

dz

P⊥
P

, (45)

so the transverse momentum is damped in time according to exp(−t/τ⊥), where,

1

τ⊥
= − 1

P

dE

dz
. (46)

Recall that in our notation, dE/dz < 0. Remember also that muon cooling does not pro-
ceed by damping the total momentum P to zero. Rather, the energy lost to ionization is
continually replenished by accelerating cavities between the absorbers, such that P remains
essentially constant at some value P0.

Turning to the longitudinal momentum, we are not concerned with damping Pz to zero,
but damping the difference, ΔPz = Pz − Pz,0, while Pz,0 ≈ P0. Much as in sec. 3.2, we then
write,

dΔPz

dt
=

d

dPz

dE

dz
ΔPz ≈ d

dP

dE

dz
ΔPz =

dE

dP

d

dE

dE

dz
ΔPz = v

d

dE

dE

dz
ΔPz. (47)

Thus, the longitudinal damping time τ‖ is given by,

1

τ‖
= − d

dP

dE

dz
= −v

d

dE

dE

dz
. (48)

For γ < 3-4, τ‖ < 0, the longitudinal momentum spread is not damped, but grows with
time.

The above is true, but are we making any money from it?

3.4 Emittance Damping Times

This section follows [13].
We could also consider the damping of the emittances, again with the neglect of multiple

scattering and straggling.
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Thus, eq. (19) tells us that the transverse emittance εN has a damping distance z⊥ given
by,

1

z⊥
= − 1

β2E

dE

dz
. (49)

When a particle traverse one damping distance in the absorber, it loses energy E⊥ related
by,

1

E⊥
= − 1

z⊥ dE
dz

=
1

β2E
. (50)

Similarly, eq. (33) for (ΔE)2 leads to a damping distance zΔE given by,

1

zΔE
= −2

d

dE

dE

dz
, (51)

and the energy loss EΔE over this distance is,

1

EΔE
=

2 d
dE

dE
dz

dE
dz

≈ − 2

γ2β2E

(
1 − γ2

12

)
, (52)

where the approximation follows from eq. (20-39).
We now consider the sum of the energy damping decrements of the 2-d emittances in x,

y and ΔE. Noting that Ex = Ey = E⊥, we have,

∑ 1

Ei
=

2

E⊥
+

1

EΔE
=

2

β2E
+

2 d
dE

dE
dz

dE
dz

≈ 2

E

(
1 +

1

12β2

)
≈ 2

E
, (53)

where the first approximation is based on eq. (52), and the second approximation is reason-
able for β near 1.

It is implied in [13] that the final result of eq. (53) is exact, but my derivation is not
powerful enough to reveal this.

In our case, the claim of Robinson could be satisfied by any function of E, not just 2/E.
However, it is helpful to know that the result eq. (53) is not an accident.

The impact of eq. (53) for muon cooling is that strong transverse cooling implies strong
longitudinal heating, even when neglecting multiple scattering and straggling!

4 Canonical Angular Momentum

4.1 Kinematic Facts

The canonical angular momentum of a charge e, with mechanical momentum P = (Pr, Pφ, Pz)
in a solenoid field B = Bzẑ is,

Lz = r

(
Pφ +

eAφ

c

)
= rPφ +

er2Bz

2c
, (54)

in Gaussian units, where r is the distance from the magnetic symmetry axis in cylindrical
coordinates (r, φ, z), and the (coulomb-gauge) vector potential of the solenoid field is A =
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(0, rBz/2, 0). If the particle has transverse momentum P⊥, the radius RB of its helical
trajectory in the magnetic field is,

RB =
cP⊥
eBz

, (55)

and the sense of rotation of the trajectory is −ẑ (Lenz’s law).
We label RG as the distance from the magnetic axis to the “guiding ray” of the helical

trajectory (axis of the helix).

R

R

R

R    - R B

G

R G
Magnetic Axis

R    - RG

G

B

B

B

R    + RG B

R    + RG B

a)  L   > 0 b)  L   < 0

P

P

zz

Figure 1: The projection onto a plane perpendicular to the magnetic axis
of the helical trajectory a charge particle of transverse momentum P . The
magnetic field Bz is out of the paper, so the rotation of the helix is clockwise for
a positively charged particle. a) The trajectory does not contain the magnetic
axis, and Lz > 0. b) The trajectory contains the magnetic axis, and Lz < 0.

Since the canonical angular momentum is a constant of the motion, we can evaluate it
at any convenient point on the particle’s trajectory. In particular, we consider the point at
which the trajectory is closest to the magnetic axis. As shown in Fig. 1, this point obeys
r = RG −RB , and so eq. (54) tells us that,

Lz = (RG − RB)P⊥ +
eBz

2c
(RG − RB)2 =

(
R2

G − R2
B

) eBz

2c
, (56)

using eq. (55). Note that R2
G − R2

B is the product of the closest and farthest distances
between the trajectory and the magnetic axis.

Hence, the canonical angular momentum vanishes for motion in a solenoid field if and
only if RG = RB, i.e., if and only if the particle’s trajectory passes through the magnetic
axis.
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We also see that if the trajectory does not contain the magnetic axis, the canonical angular
momentum is positive; while if the trajectory contains the magnetic axis, the canonical
angular momentum is negative.

4.2 The Effect of Energy Loss in an Absorber

We “cool” the transverse momentum of the muon with absorbers placed in their path. Then,
the projected trajectory of the muon after the absorber is a circle of smaller radius, according
to eq. (55). In the first approximation, we ignore multiple scattering. Then, the circle after
the absorber is tangent to the circle before the absorber, and the point of tangency is at the
absorber, as shown in Fig. 2.

a) b) c) d)

Figure 2: The effect of energy loss in an absorber on particle trajectories in a
solenoid magnetic field. The outer (dash-dot) circles represent the coil of the
magnet, seen end-on. The solid and dashed circles are the projections of par-
ticle’s trajectory before and after passing through the absorber, respectively.
a) The initial trajectory has zero canonical angular momentum, and therefore
passes through the magnetic axis. The point of absorption is on the axis also.
The final transverse momentum is lower, but the canonical angular momentum
is still zero. b) The canonical angular momentum is initially zero, but becomes
nonzero after the absorber. c) The canonical angular momentum is initially
nonzero, but the magnetic axis is within the trajectory. The absorber reduces
the magnitude of the canonical angular momentum. d) The canonical angular
momentum is initially nonzero, and the magnetic axis is not within the trajec-
tory. The absorber decreases or increases the canonical angular momentum,
depending on the location of the absorber.

There are several cases:

1. The initial canonical angular momentum is zero, and the absorber is on the magnetic
axis (Fig. 1a). The canonical angular momentum remains zero.

2. The initial canonical angular momentum is zero, but the absorber is not on the mag-
netic axis (Fig. 1b). The final trajectory does not contain the magnetic axis, and the
final canonical angular momentum is greater than zero.
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3. The initial canonical angular momentum is less than zero, so the trajectory contains
the magnetic axis (Fig. 1d). The final trajectory lies within the initial trajectory.
Unless the energy loss is large, the final trajectory will still contain the magnetic axis,
and the final canonical angular momentum remain negative. The magnitude of the
closest and farthest distances of the trajectory from the axis are both reduced, so the
magnitude of the canonical angular momentum is reduced.

4. The initial canonical angular momentum is greater than zero, so the trajectory does
not contain the magnetic axis (Fig. 1d). The final trajectory lies within the initial
trajectory, so the canonical angular momentum remains positive and its value can either
increase or decrease. If the absorber is close to the magnetic axis, the closest distance
of the trajectory to the magnetic axis is little changed, but the farthest distance is
decreased; hence, the canonical angular momentum would decrease. However, if the
absorber is far from to the magnetic axis, the farthest distance of the trajectory to
the magnetic axis is little changed, while the closest distance is increased hence, the
canonical angular momentum would increase.

In general, the effect of a series of absorbers not on the magnetic axis would be to
“cool” the transverse momentum P⊥ and the trajectory radius RB towards zero, but to leave
the particle with a nonzero guide radius RG, and hence with a nonzero canonical angular
momentum.

One option is to restrict the absorbers to a maximum radius RA. In the limit that RB

is cooled to zero, we would still have RG ≈ RA. Hence the canonical angular momentum
would converge on a value of order eR2

ABz/2c. The particle would emerge from the solenoid
with this value for its mechanical angular momentum. Hence, eq. (56) tells us,

Pφ,outside[MeV/c] ≈ eRABz

2c
= 150RA[m]Bz[T]. (57)

For example, if RA = 1 cm and Bz = 15 T, then Pφ,outside ≈ 22.5 MeV/c. This is still rather
high.

Another option is to use alternating solenoids.

4.3 Alternating Solenoids

This section follows [16]. Bob’s definition of canonical angular momentum has a sign error
for the term involving the magnetic field, if charge e is taken as positive.

The possible advantage of alternating the direction of the magnetic field in the solenoids
is sketched in Fig. 3.

Suppose the transverse momentum of a particle has been cooled to zero, but the radius
of the guiding ray is nonzero, say RG = R0. The radius RB of the helical trajectory is zero.
The canonical angular momentum of that particle in a field Bz = +B is Lz = +eR2

0B/2c.
The projection of the motion on a plane perpendicular to B is shown in Fig. 3a.

If the particle then exited the solenoid, the situation would be as sketched in Fig. 3b. In
the impulse approximation, the radius of the particle does not change, but the fringe field of
the solenoid gives it an azimuthal kick. This is easily calculated via conservation of canonical
angular momentum, and we find that Pφ,outside = eR0B/2c. This is very undesirable.
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a) c) d)b)

B   = +Bz B   = 0z B   = -Bz B   = -Bz
P   = 0
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P   = +eR  B

B

0

P

0

0

0

0

PR0
P

Figure 3: The effect of alternating the sign of the magnetic field in the solenoid.

Suppose instead, the particle exited the solenoid with Bz = +B and immediately en-
tered another solenoid with Bz = −B, as sketched in Fig. 3c. Again the canonical angular
momentum of the particle is conserved, and in the impulse approximation, the position of
the particle does not change. Hence, the transverse momentum is kicked by the fringe fields
to double the amount in case b), namely Pφ = eR2

0B/c. Since the particle is in a magnetic
field, its projected trajectory is a circle, but now RB = R0, and the circle is centered on the
magnetic axis, so that RG = 0.

If we can cool the newly created transverse momentum to half its value while in the field
Bz = −B, then the helix radius will shrink to RB = R0/2. If in this process, the radius of
the guiding ray rises from zero to R0/2, then the final canonical angular momentum would
be zero and the particle could exit the magnet without experiencing an azimuthal kick. This
is shown in Fig. 3d.

If we have enough control over the growth of RG during the cooling to guarantee the
desired final condition, RG = R0/2, a single reversal of the solenoid field would suffice. This
scenario has not been explored yet in simulation.

Rather, the present thinking is that frequent reversal of the solenoid field will best ac-
complish the desired goal of ending with very small canonical angular momentum. An
ICOOL(?) simulation, Fig. 4, shows hows a ionization cooling in a sequence of alternating
solenoids can keep the canonical angular momentum always near zero, while the mechanical
angular momentum drops by a factor of two in 20 m.

5 Betatron Function of a Solenoid

Here I try to reconcile the language of betatron functions with a separate understanding of
helical trajectories in a solenoid.
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Figure 4: Cooling of angular momentum in a channel of solenoids whose fields
are reversed every 2 m.

I read (in, for example, sec. 21 of [19]) that the amplitude x(z) for a transverse coordinate
of a particle in a beam transport system along the z axis is represented as,

x(z) = A
√

β⊥(z) cos(φ(z) + δ), (58)

where A and δ are constants, β⊥ is the betatron function, and φ is the phase-advance function
which obeys,

dφ

dz
=

1

β⊥
. (59)

The projected slope x′(z) of the trajectory then obeys,

x′(z) = − A√
β⊥(z)

sin(φ(z) + δ) + A
β′
⊥(z)

2
√

β⊥(z)
cos(φ(z) + δ),

≈ − A√
β⊥(z)

sin(φ(z) + δ), (60)

where the approximation holds for “slowly varying” betatron functions.
For the record, if we consider a bunch of particles with various Ai, then the rms bunch

parameters are,

σx = σA

√
β⊥, σx′ =

σA√
β⊥

, and ε = σxσx′ = σ2
A, (61)

ignoring correlations between x and x′. The usual relations follow,

ε =
σx

σx′
, σx =

√
εβ⊥, and σx′ =

√
ε

β⊥
. (62)
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5.1 Uniform Solenoid

We first consider a solenoid with a uniform field Bz. The a particle with charge e and
transverse momentum P⊥ moves in a helix of radius,

RB =
cP⊥
eBz

, (63)

and with angular velocity (the Larmor frequency),

ωB =
eβ⊥Bz

P⊥
=

ecBz

E
=

eβzBz

Pz
. (64)

I remember things like this from a ‘relativistic’ form of F = ma for circular motion due to
the Lorentz force: γmv2

⊥/r = ev⊥Bz/c.
Of course, the particle moves in z with velocity βzc. Hence, the x projection of a helix

centered on the z is then,

x = RB cos (ωBt + δ) = RB cos

(
ωBz

βzc
+ δ

)
= RB cos

(
eBzz

cPz
+ δ

)
, (65)

Comparing with eqs. (58-59), it is natural to identify the betatron “function” as,

β⊥ =
cPz

eBz
, (66)

based on the form of the phase (not of the amplitude). This result was quoted earlier as
eq. (2).

We can, of course, write (63) as,

RB =
cPz

eBz

P⊥
Pz

=

√
cPz

eBz

P⊥
Pz

√
β⊥, (67)

so the constant factor A (whose dimensions are [length]1/2) in (58) is,

A =

√
cPz

eBz

P⊥
Pz

=

√
cP 2

⊥
eBzPz

. (68)

5.2 Slowly Varying Field Bz(z)

For a solenoid whose field varies “slowly” in z, it is reasonable to define the local radius
RB(z) of the (nonuniform) helix and the local Larmor frequency ωB(z). Then, eq. (65)
continues to have meaning, and again we identify the betatron function as eq. (66).

But does the radius of the helix obey the form RB(z) = A
√

β⊥(z), as required for
description eq. (58) to apply? Our use of the betatron function in eq. (2) emphasized this
aspect.

For motion in a “slowly varying” field, the magnetic flux through the orbit is an adiabatic
invariant

R2
BBz =

c2P 2
⊥

e2Bz
= K = constant, (69)
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using (63). Inserting eq. (69) in eq. (68), we have,

A =

√
eK

cPz
≈
√

eK

cP
= constant, (70)

since the total mechanical momentum P is constant in any static magnetic field.
We conclude that the description (58) of both amplitude and phase in terms of the

betatron function (66) is valid for motion in a slowly varying solenoidal field so long as
Pz ≈ P , i.e., so long as the angles θx and θy are not too large.

I am intrigued by a feature of the above discussion. We have shown that the form (58) is a
reasonable description for the projected trajectory of a charged particle in a “slowly varying”
solenoid field. Nowhere in the argument was there a requirement that the solenoid field be
periodic in z. Yet the classic derivation of eq. (58) makes heavy use of this assumption.
Section 5.5 of [25] gives a good discussion eq. of (58) as an insightful guess to the solution
of the differential equation x′′ + k(z)x = 0, without requiring k(z) to be periodic.
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