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A Detector Scenario

for the Muon Cooling Experiment

1 Introduction

As a verification of the concept of ionization cooling of a muon beam the Muon Collider
Collaboration is designing an experiment to cool the 6-dimensional normalized emittance by
a factor of two. This note presents a detector to measure the 6-dimensional emittance before
and after the cooling apparatus. Figure 1 sketches the layout. See also Fig. 2 in sec. 4.

Figure 1: Top view of the layout of the detectors and a 3-T, 30-cm-diameter
bent solenoid muon channel surrounding the muon cooling apparatus. Each
detector arm is about 8 m long. Vertical guiding dipole fields of 0.55 T are
superimposed on the solenoid bends to keep the central trajectory in the hor-
izontal plane.

1.1 Measurement of Individual Muons

To avoid the cost associated with preparation of a muon beam bunched at 800 MHz, the
nominal frequency of the RF in the muon cooler, we propose to use an unbunched muon beam.
Muons will be measured in the detector individually, and a subset chosen corresponding to an
ideal input bunch. The muons are remeasured after the cooling apparatus and the output
bunch emittance calculated to show the expected reduction in phase-space volume. The
technique of tracing individual muons will reproduce all effects encountered by a bunch
except for space-charge.
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1.2 The Critical Role of the Timing Measurement

Five of the six phase-space parameters, the transverse coordinates x, x′, y, y′ and the mo-
mentum P , are typically measured in detectors of elementary particles to an appropriate
accuracy. The sixth parameter, z, or equivalently, time t relative to the bunch center must
be known to a small fraction of a cycle of the 800-MHz RF, i.e., to a few picoseconds.

The time must be measured to this accuracy or muons cannot be selected as representative
of the muon bunch we desire to study. This demanding requirement has a strong influence
on the choice of detection techniques. At present we believe the best option is the use of an
RF accelerating cavity phased to impart zero energy to a particle in time with the center
of the bunch. Such a cavity imparts a correlation between energy (and hence momentum)
and time within the bunch. Then measurement of the muon’s momentum before and after
the RF cavity permits inference of the desired time. A cost of this technique is the fourfold
momentum measurement of each muon: twice before the cooling apparatus and twice after.

For the RF timing measurement to function, we must know the muon’s time to about
1/4 cycle = 300 ps via an auxiliary measurement.

While the resolution of the momentum spectrometer at the nominal beam momentum
of 165 MeV/c is degraded by multiple scattering in even fairly small amounts of material,
the process of correlating time with momentum in the RF cavity is very insensitive to the
amount of material in the cavity.

1.3 Confinement of the Muon Beam in a Bent Solenoid Channel

Another striking feature of the experiment is the relatively large transverse emittance of
the idealized bunch under study. It is believed that the only way to contain the beam over
the lengthy transport is for it to be within a several-Tesla magnetic field parallel to the
beam direction. The logical consequence is that all detector elements must function within
this high field. Further, the dispersion required for the momentum measurement should be
provided by confining field. Here we consider the use of a bent solenoid channel, shown in
Figs. 1 and 2, rather than the hybrid system of ordinary solenoids and (transverse) dipoles
studied by Rick Fernow. Two bent solenoids are linked by ordinary solenoids to form the
muon channel of the upstream arm of the detector; another two bent solenoids from the
downstream arm.

Supposing the bend plane of the bent solenoids (more properly called toroidal sectors)
is horizontal, the beam experiences a net vertical displacement (called ‘curvature drift’ in
the plasma-physics community) of tens of cm while traversing the bend. This displacement
is cancelled for muons at the central momentum by ‘guiding dipole’ magnets whose vertical
0.55-T field is superimposed on the bend region of the solenoid channel. Off-momentum
muons are dispersed vertically – although the bend of the solenoid channel is horizontal.

The limiting aperture of the solenoid channel is the effective maximum radius of the RF
timing cavity. For a cylindrical TM0,1,0 cavity the acceleration is still one half maximum at
2/3 of the cavity radius, which we taking to be the maximum useful radius. For an 800-MHz
cavity, the usable radius is then 10 cm; for a 400-MHz cavity it would be 20 cm.

Analytic calculations and numerical simulation indicate that a beam of 165-MeV/c muons
of normalized transverse emittance εx = 1500π mm-mrad that has been prepared with a β�
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Figure 2: Layout of the “before” arm of the detector.

of 37.7 cm can be contained with rms transverse width of σR = 3 cm by a 3-T solenoid field
(or within σR = 5.6 cm in a 1.5-T field). The detectors would cover out to a radius of 10 cm,
or 3.3σR. To allow for detector infrastructure inside the solenoids but outside the fiducial
volume, the inner radius of the solenoid channel will be 15 cm (or 24 cm if the RF frequency
is 400 MHz)

A cost estimate based on a scaling law derived from numerous existing superconducting
solenoids indicates that each of the four 4-m-long bent solenoid sections would cost about
$710k for a 3-T field and 30-cm inner radius (or $530k for a 1.5-T field and 48-cm inner
diameter). To keep the cost down the detector-solenoid channel operates at lower field than
that in the FOFO cooling apparatus, and consequently with a larger β�. Matching solenoids
will be required at both the entrance and exit of each detector arm.

The power feed for the RF timing cavity requires a break in the solenoid channel midway
in each 8-meter arm. To keep the field uniform in the beam region a large radius, 3-T
transition solenoid will surround the gap where the RF power enters.

1.4 Low-Pressure Time-Projection Chambers

The principal detectors are position-measuring devices. Angles are reconstructed by com-
paring the muon’s position at various distances along the beam axis. The muon momentum
is measured by comparing angles on either side of the bent solenoids. As the muons have
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relatively low momentum, multiple scattering in detector material, and even in atmospheric-
pressure gas is significant. Hence we propose that each arm of the detector be a low-pressure
device with minimal internal structure.

The muons will be detected by the ionization of 8.4-Torr methane (if the temperature is
20◦C) corresponding to one ion pair per 3 cm of track length. Methane is still a gas a liquid-
nitrogen temperature for pressures below 10 Torr. Hence the tracking chambers, which are
inside the bore of the superconducting solenoids, could be operated near 77◦K resulting in
a lower thermal load on the magnet cryogenic system. At 77◦K a gas pressure of 2.2 Torr
leads to the same density (and hence ionization density) as does 8.4 Torr at 20◦C.

The tracking chamber must reconstruct the center of curvature of the helical orbit of
the muons in the solenoid field. In the strong magnetic field of the detector the ionization
electrons drift easily only along the field lines. Hence the collection electric field should be
aligned with the magnetic field. This leads to a detector geometry popularly known as a
time-projection chamber (TPC).

Figure 3: Sketch of the low-pressure time projection chamber.

The drift velocity of ionization electrons is a function of E/P , where here E is the electric
field and P is the gas pressure. Hence the saturation drift velocity of 100 μm/ns (methane)
is achieved at a field of only 10 V/cm at 8.4-Torr pressure. The proposed TPC is not a
high-voltage device.

Gas gain is obtained near a wire mesh anode plane in a gap separated from the ioniza-
tion/drift region by a wire-mesh grid, as shown in Fig. 3. The induced pulse on a 10-cm-radius
cathode plane subdivided into 1250 5 × 5 mm2 pads yields x and y coordinates to 200 μm
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via charge interpolation. Each pad is sampled at 50 MHz, which samples are stored in a
512-deep switched-capacitor array and multiplexed into a 12-bit ADC between beam pulses.
Interpolation of the samples in time will locate the z coordinate to 200 μm. Over a total
drift distance of 45 cm, the TPC will observe 15 points on a track segment, and measure its
angle to accuracy of about 1 mrad. The momentum resolution, σP /P , of each spectrometer
consisting of a bent solenoid surrounded by a pair of TPC’s will be 0.0014 at 165 MeV/c.

The total drift time of the ionization electrons is about 4.5 μsec, which is of the same order
as, perhaps even longer than, the active time of the RF system of the cooling apparatus.
So in effect, the detector concurrently samples all muons in a single RF macropulse. To
successfully isolate each of these muons there should be no more than about 10 muons per
macropulse, independent of its length so long as it is in the range of 50 ns-4.5 μs.

A higher rate capability could only be achieved with a detector with shorter drift times,
and hence more walls and higher channel count. The additional walls will compromise
the angular resolution due to multiple scattering, while the higher channel count raises the
detector cost.

To achieve good spatial resolution over their 45-cm length, the low-pressure TPC’s should
be located in regions where the magnetic field is well understood and as uniform as possible.
Hence the TPC’s should be located at least one solenoid diameter back from the ends of the
straight sections.

The 2-m-long region between TPC’s in each momentum spectrometer could be filled with
helium, at the same pressure as the TPC gas, to minimize multiple scattering. The TPC
electrodes facing the bent solenoids will be made of 5-μm-thick beryllium, which could also
form the gas boundary between methane in the TPC and helium in the bent solenoid.

1.5 Auxiliary Timing Measurement

As mentioned above, we must know the muon’s time to about 300 ps for proper interpre-
tation of the RF timing measurement. Also, it will be extremely helpful to have a timing
measurement of each muon to accuracy of 1 ns to mark the start of the drift time in the
TPC detectors.

A 100-ps timing measurement could be accomplished in a 1.5-T field region with scintilla-
tion counters and fine-mesh photomultipliers. In a 3-T field we may have to use microchannel-
plate PMT’s. The auxiliary timing measurement can be combined with the RF timing
measurement to identify electrons, muons and pions by time of flight.

1.6 Cost

• The bent solenoid channel, including guiding dipoles and matching solenoids, is esti-
mated to cost about $4M.

• The two RF timing cavities operate at the same frequency as the cooling apparatus,
and will add about $0.5-1M to the RF budget.

• The 8 TPC detectors have a total channel count of about 10,000. Their cost will be
dominated by that of the readout, which at about $100/channel totals $1M.
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• An auxiliary timing detector based on fine-mesh photomultipliers would cost about
$0.2M, but would cost close to $1M if MCP-PMT’s must be used.

• Thus the total detector cost is in the range $5.7-6.5M.

1.7 Near-Term R&D

The low-pressure tracking chamber is not novel in principle, but it would be well to build a
prototype of proposed configuration during the next 18 months. The scale of the required
effort in about $100k in equipment.

The auxiliary timing device is relatively standard if based on fine-mesh photomultipliers
and scintillator bars. A prototype of two bars each with two PMT’s could be built for $30k,
or $50k for MCP-PMT’s.

The RF timing cavity is presumed to be of similar design to those of the FOFO cooling
channel. Prototypes of the FOFO RF cavities could well serve as the final timing cavities,
and so little independent R&D is needed here.

The bent solenoid sections are somewhat novel. Each is estimated to cost about $700k.
Construction of one section as an R&D project would be the costliest item in the proposed
R&D budget.

2 Detector Requirements

2.1 Combined Accuracy

Ignoring correlations, the 6-dimensional emittance ε of the muon beam is the product of the
rms widths of the projections of the muon population on the six phase-space axes x, Px,
y, Py, z and Pz. We take the z-axis as parallel to the beam. We generally consider the
trace space with axes x, x′, y, y′, z = βzct and Pz ≈ P rather than the formal phase space.
However, we use the term ‘phase space’ for either the trace space or the canonical phase
space.

We label a variance (second moment) of the distribution of muons by σ2
i where i indicates

one of the six phase-space axes. We call σi the rms width. The uncertainty in σi is labelled
δσi

. Then the emittance is

ε =
6∏

i=1

σi, (1)

and the corresponding uncertainty is

δε

ε
=

√√√√ 6∑
i=1

(
δσi

σi

)2

. (2)

Supposing the relative uncertainty is the same in all six projections, we have

δε

ε
=

√
6
δσ

σ
. (3)
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In the cooling experiment it is proposed to demonstrate a factor of two reduction in the
6-D emittance. Before this large a reduction is observed we will likely pass through stages
with smaller reduction. Hence the measurement uncertainty, δε/ε, should be much less than
1/2; a goal of 3% uncertainty has been set. Then eq. (3) implies that the relative uncertainty
in the rms width of the projection of phase space onto each of the six axes should be only
1%.

2.2 Effect of Detector Resolution

For several phase-space axes the ratio of the rms width σD of the detector resolution function
to the rms width σi of the projected distribution is larger than 1%; i.e., σD/σi > 0.01.
Typically, multiple scattering is the cause of poor detector resolution. Can we achieve the
desired measurement accuracy of δσi

/σi in this case?
In the Gaussian approximation, the observed rms width σO of the projected phase-space

distribution is sum in quadrature of the ‘true’ rms width σi and the rms width σD of the
detector resolution:

σ2
O = σ2

i + σ2
D. (4)

We suppose that σD is known to an accuracy δσD
. Then, we extract the desired rms width

σi according to
σ2

i = σ2
O − σ2

D. (5)

We now wish to characterize the uncertainty δσi. From eq. (5) we find

δ2
σ2

i
= δ2

σ2
O

+ δ2
σ2

D
. (6)

Next, the uncertainty in the observed variance σ2
O after a set of N measurements is1

δσ2
O

=

√
2

N
σ2

O =

√
2

N

(
σ2

i + σ2
D

)
. (7)

Then, noting that δσ2 = 2σδσ we find the key result:(
δσi

σi

)2

=
1

2N

(
1 +

σ2
D

σ2
i

)2

+

(
σD

σi

)4(
δσD

σD

)2

. (8)

2.2.1 Perfectly Known Resolution

In the limit that the detector resolution is completely understood we have δσD
= 0, and the

relative uncertainty in the rms width σi is

δσi

σi
=

√
1

2N

(
1 +

σ2
D

σ2
i

)
. (9)

If the detector resolution σD is larger than the rms width σi we wish to measure, the number
of events required to achieve a specified accuracy, δσi/σi varies as the fourth power of the
ratio σD/σi.

1See, for example, sec. 28.2 of the chapter on Statistics of the Review of Particle Properties (1996).
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Thus, there is a severe statistical penalty unless

σD < σi. (10)

However, once relation (10) is satisfied,

δσi

σi
≈
√

1

2N
. (11)

In this case, about 10,000 measurements would be required to reach a 1% relative uncertainty
in σi

If, say, only 1% of the beam muons occupy the relevant part of phase space, a typical
run would require measurement of 106 muons.

2.2.2 Large-N Limit

In the other limit that counting statistics, but not detector resolution, can be neglected, we
have

δσi

σi
=

(
σD

σi

)2
δσD

σD
. (12)

Good results can only be obtained if σD/σi is less than one, unless the detector resolution is
extraordinarly well understood. However, if σD/σi is much less than one, very good results
are possible.

2.2.3 Maximum Acceptable Detector Resolution

To achieve the goal of measurement accuracy δσi/σi = 0.01, we require that the effect of
detector resolution be no more than half in quadrature, i.e., δσi/σi < 0.007 as the number
of measurements grows large.

We also suppose that the uncertainty in the detector resolution function will be no more
than 20%:

δσD

σD
< 0.2. (13)

Then eq. (12) tells us that the detector resolution must obey

σD <

√
δσi/σi

δσD
/σD

σi = 0.19σi. (14)

The first part of expression (14) indicates that if we know the detector resolution function
to the same accuracy as we desire for δσi

/σi then the detector resolution can be the same as
σi. In particular,

If
δσD

σD
< 0.01, then we can have σD ≈ σi and

δσi

σi
= 0.01. (15)
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2.3 Phase-Space Parameters

We now consider the specific implications of the previous analysis to measurements of the
various phase-space projections. Table 1 lists various parameters of the phase space to be
explored in the cooling experiment.

The normalized transverse input emittance we wish to study is εN,x = εN,y ≈ 1250π
mm-mrad for a nominal beam momentum of 165 MeV/c. Then, γ = 1.85, β = 0.84, and the
geometric transverse emittance is εx = εy = εN/γβ = 800 mm-mrad. The cooling apparatus
is expected to operate with input β� ≈ 10 cm, so the characteristic width of the transverse
phase-space distributions are σx = σy ≈ 9 mm, and σx′ = σy′ ≈ 90 mrad. The output β� is
expected to be about 10 cm also.

Of course, the β� in the muon channel of the detector need not be the same as that in
the cooling apparatus. Matching solenoid magnets would, however, be required if (as argued
below) the detector β� is larger than 10 cm.

Table 1: Phase-space parameters of the FOFO-channel cooling experiment.

Parameter Input Output
Value Value

P (MeV/c) 165 165
E (MeV) 198 198
γ 1.85 1.85
β 0.84 0.84
γβ 1.56 1.56
εx,N = εy,N (π mm-mrad) 1250 625
εx = εy (π mm-mrad) 800 400
β� (cm) 10 10
σx = σy (mm) 9 9
σx′ = σy′ (mrad) 90 63
σP/P 0.03 0.04
σE/E = β2σP /P 0.021 0.028
σz (cm) 1 1.2
σt = σz/βc (ps) 40 48

2.4 Accuracy of Extrapolation of the Emittance Along the Beam

The transverse emittance is measured separately in each of the 8 TPC’s. Likewise, the mo-
mentum will be known at the position of each of the TPC’s. The timing will be directly
measured, in effect, at the center of the RF timing cavity. However, for the cooling experi-
ment we need to know the 6-D emittance at the entrance and exit of the cooling apparatus.
This requires extrapolation of the timing over about 4 meters. Combining eq. (14) with
the values in Table 1, we can achieve accuracy δσt = 0.4 ps if the time resolution σt,D of
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the detector after extrapolation by 4 m is 8 ps; and we must know this resolution to an
uncertainty of 1.5 ps. We could relax the requirement on time resolution to, say, σt,D = 16
ps only if the uncertainty in the time resolution is reduced to 0.6 ps.

When we extrapolate over a distance L along the beam the resulting uncertainty in the
corresponding time step, t = L/βzc = L/βc cos θ, due to uncertainty in momentum is

δt =
L

β2c cos θ
δβ =

L

γ2βzc

δP

P
≈ 1000 [ps]

[
L

1 m

]
δP

P
, (16)

where θ is the angle of the trajectory to the z-axis. Hence, the desired uncertainty on the
time extrapolation that δt < 8 ps after 4 m sets a requirement on momentum resolution that
σP,D/P < 0.002.

Similarly the sensitivity of the time extrapolation to the uncertainty in angle θ is

δt =
L tan θ

βzc
δθ ≈ 4000 [ps]

[
L

1 m

]
tan θδθ. (17)

Hence, the desired uncertainty on the time extrapolation that δt < 8 ps after 4 m sets a
requirement on angular resolution that σθ,D < 0.0005/ tan θ. We will find later that in the
detector the β� should be increased to about 1 m, corresponding to rms θ of 0.03. Then
the timing extrapolation is accurate enough so long as σθ,D < 0.017, which is not very
demanding.

Of course, muons with momentum and angles at, say, 3σP,D and 3σθ,D will suffer larger
extrapolation errors, so we prefer to exceed the requirements just stated if possible. Also, the
two uncertainties (16) and (17) add in quadrature to the measurement uncertainty σt,D,cavity

at the rf cavity to determine the total uncertainty in the extrapolated time. To account for
these effects we specify requirements

√
2 tighter:

σP,D

P
< 0.0014, σθ,D < 0.011 (Time extrapolation), and σt,D,cavity = 6 ps. (18)

The time extrapolation requires better momentum resolution than does the direct measure-
ment of either momentum (need only σP,D/P = 0.006) or time (see sec. 3.3).

2.5 Accuracy of Momentum Measurement

Use of a bent solenoid inside a guiding dipole in a momentum spectrometer leads to some
features that may be unfamiliar. In particular, the momentum dispersion is vertical when
the overall bend is horizontal.

2.5.1 Larmor Frequency, Period, and Radius

The trajectory of a muon in a straight solenoid with magnetic field Bs is a helix, whose axis
we will call the ‘guiding ray’. The projection of the trajectory onto a plane perpendicular to
the guiding ray is a circle of radius Rcurv. In this plane the equation of motion is (in MKSA
units)

γmv2
⊥

Rcurv
= γmΩBv⊥ = ev⊥Bs, (19)
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so the Larmor frequency ΩB is

ΩB =
v⊥

Rcurv
=

βc sin θ

Rcurv
=

ec2Bs

γmc2
=

(3 × 108)2

105.6 × 106

Bs [T]

γ
= 0.852 GHz

Bs [T]

γ
, (20)

where as before θ is the angle between the muon trajectory and the guiding ray. During one
Larmor period the muon advances distance λB given by

λB [m] =
2πβzc

ΩB

=
2πPz

eBs

≈ 2πP

eBs

=
2π × 106

3 × 108

P [MeV/c]

Bs [T]
= 2π

P [MeV/c]

300Bs [T]
. (21)

The radius of curvature of the helical trajectory follows from (20):

Rcurv [m] =
P⊥
eBs

=
P

eBs
sin θ =

P [MeV/c]

300Bs [T]
sin θ. (22)

For example, 165-MeV/c muons in a 3-T field have Larmor frequency ΩB = 1389 MHz and
period λB = 1.15 m. The helix radius of curvature is Rcurv = 18.3 sin θ cm.

2.5.2 Curvature Drift

A bent solenoid is actually a sector of a toroidal field, so ideally the magnetic field varies
as 1/Rcurv in the bend plane, and does not vary transversely to the bend plane. A muon
moving in the field of the bent solenoid spirals around a ‘guiding ray’ that follows a magnetic
field line in the zeroeth approximation. However, in a better approximation the ‘guiding
ray’ is deflected out of the bend plane by effects sometimes called the ‘curvature drift’ and
the ‘grad-B drift‘ in the plasma-physics community [2]. Briefly, the muon encounters a
transverse, horizontal component of the magnetic field as it moves around the bend, so the
corresponding v × B force is perpendicular to the bend plane.

First consider the case of no vertical guiding magnetic field. Lines of the bent solenoid
field Bs are assumed to be horizontal circles. The guiding ray of a muon is in a horizontal
circle of radius Rbend to the first approximation.

We analyze the motion in the frame in which the forward motion of the muon is zero. This
is a rotating frame with laboratory angular velocity Ω = βzc/Rbend ≈ βc/Rbend. Then in the
rotating frame the muon experiences a centrifugal force horizontally outwards of magnitude

Fcent = γmΩ2Rbend ≈ γmc2β2

Rbend
. (23)

This fictitious force can be conveniently thought of as arising from a fictitious electric field

Ecent ≈ γmc2β2

eRbend
(24)

pointed horizontally outwards.
The motion of the muon in the rotating frame then results from the crossed fields Ecent

and Bs. As is well known, the motion consists of an oscillatory part and a drift. The
oscillatory part is at the Larmor frequency discussed above. Here we wish to isolate the
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drift velocity, which we do be requiring the Lorentz force associated with vdrift to cancel the
centrifugal force:

0 = e[Ecent + vdrift × Bs], (25)

and hence

vdrift =
Ecent

Bs
≈ γmc2β2

eRbendBs
=

P

eBs

βc

Rbend
. (26)

This is the curvature drift, which is vertical in case of a solenoid bent in the horizontal
plane. Since a vertical motion is observed to be the same in both the rotating frame and
the laboratory frame, our analysis holds in the latter frame as well. The drift velocity is
proportional to momentum, and inversely proportional to the solenoid field strength. Thus
the bent solenoid disperses the muon beam vertically.

Because the bent solenoid is really a toroid the field strength varies as 1/Rcurv. This
variation leads to a small correction to eq. (26) due to the ‘grad-B force’, which we neglect
in the present discussion.

For 165-MeV/c muons in a 3-T bent solenoid with a 1-m bend radius the vertical drift
velocity would displace the beam by about 16 cm vertically per meter of path. By itself, a
bent solenoid leads to a troublesome nonplanar trajectory for the central ray.

2.5.3 Bent Solenoid with a Guiding Dipole

The curvature drift (26) can be cancelled for a specific momentum if a vertical magnetic
field is superimposed on the horizontal bent solenoid. The vertical field strength is chosen
such that the radius of curvature of the trajectory of a muon of momentum P0 is exactly
the bend radius Rbend of the bent solenoid. Then as the ‘central’ muon (for which P = P0

and θ = 0) moves through the bent solenoid it never encounters a component of the solenoid
field perpendicular to its trajectory, and hence is not deflected vertically. This configuration
is much more practical for a momentum spectrometer.

The vertical ‘guide field’ is provided by a ‘guiding dipole’ that surrounds the bent solenoid.
The desired vertical-guide-field strength BG is thus

BG [T] =
P0

eRbend
=

P0 [MeV/c]

300Rbend [m]
, (27)

recalling eq. (22). For example, with P0 = 165 MeV/c and Rbend = 1 m we need a guide
field of BG = 0.55 T.

The guide field should cancel the curvature drift for muons of momentum P0 no matter
how far they are from the center of curvature of the bent solenoid. Therefore, the guide field
should vary inversely with the distance from the center of curvature, just as does the bent
solenoid field. This property is implicit in eq. (27). We find in sec. 2.6.3 that the if the guide
field were uniform it would lead to undesirable vertical broadening of the beam.

Muons with momenta different from the central momentum still experience a vertical
deflection. To the first approximation the effect of the vertical guide field can be thought of
as reducing the curvature drift velocity (26) by the drift velocity of the central ray. Then
for a muon with momentum difference ΔP from the central momentum the residual vertical
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drift velocity is

Δvdrift ≈ ΔP

eBs

βc

Rbend
. (28)

If the bent solenoid has total bend angle θbend then the time to cross the bent solenoid is
t = Rbendθbend/βzc ≈ Rbendθbend/βc, and the resulting vertical deflection is

yG = Δvdriftt ≈ P0

eBs

ΔP

P0
θbend. (29)

It is important to note that eq. (29) describes the deflection of the guiding ray of the muon
trajectory and not the trajectory itself. (The exception is a trajectory with θ = 0 at the
entrance to the bent solenoid, in which case the guiding ray and the trajectory are identi-
cal.) The muon’s momentum cannot be determined simply by measuring the height of its
trajectory at the entrance and exit of a bent solenoid. Rather, the height of the guiding
ray must be reconstructed at both places. Each such reconstruction requires observation of
enough of the helical trajectory that its center can be determined.

A counterintuitive aspect of eq. (29) is that the vertical dispersion varies inversely with
the strength Bs of the bent solenoid (and does not depend directly on the strength BG of
the guiding dipole). In the next section we show that the accuracy with which the height of
the guiding ray can be measured varies as 1/B2

s , which restores the expected result that the
momentum resolution improves with 1/Bs.

2.5.4 Momentum Analyzing Power

To use the dispersion, (29), of a bent solenoid to measure the momentum of a muon, we
must locate the center of the helical trajectory of the muon at the entrance and exit to the
bent solenoid. This will be done by tracking detectors in the straight solenoid magnets on
either side of the bent solenoid.

The reconstruction of helical trajectories in solenoid fields is a well established procedure,
and we use results summarized in sec. 24.8 of the Review of Particle Properties (1996)
to characterize the accuracy of such reconstruction. In particular, we suppose that the
uncertainty on locating the center of the helix is the same as the uncertainty in measuring
its radius of curvature. That is, we suppose that

δyG = δRcurv = R2
curvδk, (30)

where k = 1/Rcurv is the curvature. The uncertainty δk is due both to uncertainty δkres in
the position measurements by the tracking device and to uncertainty δkms caused by multiple
scattering. These two uncertainties can be approximated as

δkres =
σx,D

L2 sin2 θ

√
720

N
, (31)

and

δkms =
16 [MeV/c]

LPβ sin2 θ

√
L

X0

, (32)
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for observation of N � 1 points on the trajectory over length L in a sampling medium
(chamber gas) whose radiation length is X0. The spatial resolution of each measurement is
σx,D. Recall that θ is the angle between the muon trajectory and its guiding ray.

Labelling the ionization density in the chamber gas as n clusters/m so that N = nL, and
recalling eq. (22) we then have

δyG,res =

(
P sin θ

eBs

)2
σx,D

L2 sin2 θ

√
720

nL
=

(
P

eBs

)2
σx,D

L5/2

√
720

n
, (33)

and

δyG,ms =

(
P sin θ

eBs

)2
16 [MeV/c]

LPβ sin2 θ

√
L

X0
=

(
P

eBs

)2
16 [MeV/c]

Pβ

√
1

LX0
. (34)

We will design the detector so that the position-resolution term, (33), dominates the un-
certainty in the measurement of the height of the guiding ray. (See sec. 2.5.6 for a caveat.)
Then we can combine eqs. (29) and (33) to predict the accuracy of the momentum measure-
ment:

σP,D

P
≈ 1

θbend

P

eBs

σx,D

L5/2

√
720

n
. (35)

As expected, the momentum resolution improves with increasing magnetic field. However, to
lower the cost of the solenoid channel we will want to use as low a magnetic field as possible.
The momentum resolution is improved by increasing θbend and by increasing the length L of
the tracking system. It would not be possible to assemble a planar transport system with
θbend > π; we will try to keep θbend around 1 radian. Since the resolution improves as L5/2

the easiest way to compensate for a lower field is to use a longer length L.

2.5.5 Limit on Radiation Lengths in the Tracking Device

Once the tracking length L has been chosen, the requirement that δyG,ms < δyG,res implies
a requirement on the radiation length of the chamber gas. From eqs. (33) and (34) we see
that we need

X0 >
n

720

(
16 [MeV/c]

Pβ

)2
L4

σ2
x,D

. (36)

While this is not satisfied by an atmospheric pressure gas, it is easily satisfied by a
low-pressure chamber gas.

2.5.6 Limit on Radiation Lengths in the Momentum Spectrometer

A more stringent limit on the amount of material comes from consideration of the effect
of multiple scattering in the upstream tracking device on the trajectories of muons in the
downstream tracking device.

Recall that in the bent solenoid channel with guiding dipoles, momentum measurement
is based on reconstruction of the guiding ray of the helical orbit, and not simply on recon-
structing the orbit itself. Expression (29) for the momentum dispersion can be rewritten to
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give the uncertainty of the momentum measurement, δP/P , in terms of the uncertainty δyG

in the vertical displacement of the guiding ray in the bent solenoid:

δP

P
=

eBs

P

δyG

θbend
. (37)

When a muon undergoes multiple scattering its angle θ to the guiding ray changes, which
causes a change in the radius of curvature of the helical trajectory. From eq. (22) this change
is

δRcurv =
P

eBS

δθms, (38)

where the subscript ms stands for multiple scattering. As a consequence, the transverse
position of the guiding ray of the muon’s trajectory is displaced by δRcurv. We identify this
with the uncertainty δyG that enters eq. (37) to find

δP

P
=

δθms

θbend
, (39)

independent of the strength of the solenoid magnets.
From the usual expression for the effect of multiple scattering on angle:

δθms =
13.6 MeV/c

Pβ

√
NX, (40)

where NX = L/X0 is the number of radiation lengths of material along the particle’s path,
we find the limit that

NX <

(
(σP,D/P )Pβθbend

13.6 MeV/c

)2

, (41)

to be compatible with a desired momentum resolution σP,D/P . For example, to measure
the momentum of 165-MeV/c muons to an accuracy of σP,D/P = 0.0014 would require
NX < 0.0002 radiation lengths in the momentum spectrometer. To meet this requirement
we will optimize the pressure in the tracking devices (sec. 2.6.7).

We may wish to use helium gas in the bent solenoids between the tracking devices. Then
we could take the possibly optimistic view that the limit (41) is not a strict bound, but may
be too severe for a detector system in which essentially all material is the sampling medium.
Then the amount of multiple scattering is measured to some accuracy for each muon and
the momentum analysis is less uncertain than implied by eq. (39). The results of sec. 2.5.4
give a flavor of the more sophisticated analysis that still needs to be performed.

2.6 Optimization of Detector Parameters

2.6.1 Scaling Law for Cost of Superconducting Solenoids

Green et al. [3] have made a fit to the cost of a large number of existing solenoid magnets in
1991 dollars as

Cost [M$] = 0.52(U [MJ])0.66, (42)
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where U is the stored energy in MJoules given by

U [MJ] =

∫
B2dvol

2μ0

≈ 2(Bs [T] Rs [m])2Ls [m], (43)

and Rs and Ls are the radius and length of the solenoid, respectively. The approximation in
eq. (43) takes the total stored energy to be 1.6 times that within the cylinder of radius Rs

and length Ls. Combining (42) and (43) we find

Cost [M$] = 0.82(Bs [T] Rs [m])1.32(Ls [m])0.66. (44)

In the present application, the total length of the solenoid system (in contrast to the
length of the tracking detector) depends only slightly on the details of the design of the
experiment. Hence, to a first approximation the magnet cost is least after minimizing the
product BsRs.

2.6.2 Minimum Solenoid Radius

We adopt the criterion that to keep beam-transport losses below 10−3 the solenoid radius Rs

must be greater than 3.3σR, where σR =
√

σ2
x + σ2

ymax
is the maximum rms radial extent of

the beam in the solenoid channel.
In this section we present an analysis of a straight solenoid, and add the effect of a bent

solenoid in the next section.
If the beam enters the channel with transverse emittance εx and betatron parameter β�

then at a waist the rms transverse width is

σx,waist =
√

εxβ
�, (45)

and rms angular spread

σx′,waist = σθ =

√
εx

β� . (46)

As the muons leave the waist they travel in helices with radius of curvature Rcurv ≈
Pθ/eBs. The distribution of radii of curvatures than has rms width

σRcurv =
P

eBS
σθ =

P

eBS

√
εx

β� . (47)

The maximum rms width, σx,max, of the transverse motion can be estimated as the sum
in quadrature of σx,waist and σRcurv. This is minimized when the two terms are equal, which

implies that we should chose β� = P/eBs, leading to σR,max =
√

2σx,max = 2
√

Pεx/eBs.
The preceding simplified argument can be formalized using the transfer matrix for a

particle completely within a solenoid magnet:2

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 P
eBs

sin φ 0 P
eBs

(cosφ − 1)

0 cosφ 0 − sinφ

0 − P
eBS

(cos φ − 1) 1 P
eBS

sinφ

0 sin φ 0 cosφ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (48)

2We have calculated this matrix ourselves. It is NOT the transfer matrix for a solenoid including fringe
fields as found in TRANSPORT [4, 5].
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where φ = eBsΔz/P = 2πΔz/λB . The transverse phase space of the beam is characterized
by the beam matrix σij where i = x, x′, y, y′. The transformation of the beam matrix from
position z0 along the beam to position z1 = z0 + Δz is given by

σ1 = Mσ0M
T
, (49)

where MT is the transpose of matrix M.
If we start from a waist, matrix σ0 is diagonal with σ0

xx = σ0
yy = σ2

x and σ0
x′x′ = σ0

y′y′ = σ2
x′.

We are presently interested in σ2
R = σ1

xx + σ1
yy, which follows from eq. (49):

σ2
R = (M2

xx + M2
xy + M2

yx + M2
yy)σ

0
xx + (M2

xx′ + M2
xy′ + M2

yx′ + M2
yy′ )σ

0
x′x′

= 2εx

(
β� + 2

(
P

eBs

)2
1 − cosφ

β�

)
, (50)

using eqs. (45-46). We desire the conditions for which σ2
R is a maximum with respect to φ

but a minimum with respect to β�. Clearly the maximum in φ occurs at φ = π, one half
cylcotron period from the waist. Then

∂σ2
R(φ = π)

∂β� = 0 ⇒ β� [m] =
2P

eBs
=

P [MeV/c]

150Bs [T]
, (51)

twice that found in the simplified argument. The corresponding rms width of the beam is√
2 times that found by the simplified argument:

σR,max [m] = 2

√
2Pεx

eBs
. (52)

2.6.3 Effect of a Bent Solenoid on the Minimum Radius

The argument of the preceding section holds in a bent solenoid only for the beam size in the
x-direction, i.e., in the horizontal bend plane. In the vertical direction (y) the momentum
dispersion enlarges the beam according to eq. (29), so the channel must have a larger inner
radius.

Furthermore, if the guiding dipole has a uniform field, expression (29) actually holds only
for muons whose guiding ray enters the bent solenoid at x = 0. To see this, note that the
field in the bent solenoid varies with x according to

Bs(x) = Bs(0)
Rbend

Rbend + x
, (53)

taking positive-x as away from the center of curvature of the bent solenoid. (In this section
we imagine the x-axis as perpendicular to the central ray.) Recall that eq. (29) expresses the
difference of the curvature drift caused by the bent solenoid and the correction applied by
the guiding dipole which is matched to the central momentum, P0. That is, we can rewrite
eq. (29) for a muon of momentum P = P0 + ΔP whose guiding ray is has coordinate x as

yG(x) ≈
(

P

eBs(x)
− P0

eBs(0)

)
θbend ≈ P0

eBs(0)

(
ΔP

P0
+

x

Rbend

)
θbend. (54)
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In practice the two terms in the rightmost form of eq. (54) would be comparable, leading to
the need for an even larger bent solenoid to contain the beam.

Therefore, the guide field should not be uniform, but should vary with x in the same way
as the bent solenoid field:

BG(x) = BG(0)
Rbend

Rbend + x
, (55)

Then the vertical dispersion due to the bent solenoid will contribute only

σy,disp ≈ P

eBs

σP

P
θbend (56)

to the vertical beam size. In this expression, σP/P measures the momentum spread of the
muon beam

This must be added in quadrature to the maximal beam size due to transport in a straight
solenoid, eq. (52), to yield

σR,max ≈
√(

P

eBs

σP

P
θbend

)2

+
8Pεx

eBs
. (57)

Then our requirement that the solenoid radius Rs be at least 3.3σR leads to the quadratic
equation

θbend

(σP

P

)2
(

P

eBs

)2

+ 8εx
P

eBs

−
(

Rs

3.3

)2

= 0, (58)

whose solution is

P

eBs
=

√(
4εx

θbend(σP/P )2

)2

+
1

θbend

(
Rs

3.3(σP/P )

)2

− 4εx

θbend(σP /P )2
. (59)

2.6.4 Choice of Solenoid Parameters

From eq. (59) we see that the optimal product BsRs that enters in the magnet-cost parametriza-
tion (44) decreases as the magnet radius Rs increases. Hence in principle, the cost is mini-
mized by a solenoid with arbitrarily weak field surrounding a beam of arbitrarily large size.

Therefore we must use some other criterion to set the beam size, which we see should
be as large as is reasonable. A practical consideration in the present experiment is that the
muon beam must fit through the TM0,1,0 RF timing cavity, whose radius is 14.6 cm at 800
MHz (see sec. 3). We chose

Rs = 10 cm (60)

so that the energy gain for a muon at radius Rs is still one half that of one on axis.
Many parameters of the solenoid channel can now be set based on previous considerations.

The solenoid field follows from eq. (59):

Bs =
P

e

[√(
4εx

θbend(σP /P )2

)2

+ 1
θbend

(
Rs

3.3σP /P

)2

− 4εx

θbend(σP /P )2

]
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=
165

300

[√(
4·8×10−4

(0.05)2

)2

+
(

0.1
3.3·0.05

)2 − 4·8×10−4

(0.05)2

] = 4 T (61)

for a beam of 165-MeV/c muons with transverse emittance of 800π mm-mrad and a momen-
tum spread of σP/P = 0.05 in a bent solenoid channel with θbend = 1 radian.3

The numerical simulations reported in sec. 2.6.5 indicate that we can confine the beam
to 10 cm radius in a 3 Tesla field rather than 4 T as suggested by eq. (61). Hence we will
provisionally adopt 3 T as the solenoid field strength.

The solenoid channel will consist of four sections, two upstream and two downstream,
each about 4 m long. Then the cost per section is

Cost = 0.82(3 · 0.1)1.32 · 40.66 = 0.42 M$ (Rs = 10 cm) (62)

in 1991 dollars according to eq. (44).
It would be useful to increase the inner radius of the solenoid to about 15 cm to provide

clearance for detector mounts. The cost for this option would be

Cost = 0.82(4 · 0.15)1.32 · 40.66 = 0.71 M$ (Rs = 15 cm) (63)

per magnet section.
The β� for the solenoid channel should be

β�
optimal =

P [MeV/c]

150Bs [T]
=

165

150 · 3 = 0.367 m (64)

according to eq. (51).
The rms beam widths at a waist are then

σx =
√

εβ� = 1.7 cm and σx′ =
√

ε/β� = 47 mrad. (65)

The parameters of the optimized bent-solenoid channel are summarized in Table 2, which
includes parameters for an option using a 400-MHz RF timing cavity as well.

2.6.5 Numerical Simulation of Beam Transport in the Solenoid Channel

We have performed a numerical simulation of the muon trajectories by integrating the equa-
tions of motion. At present we assume that the horizontal fields within the straight solenoid
sections are those of an ideal solenoid, and those in the bent solenoids are those of an ideal
toroidal sector. Likewise, ideal vertical guiding fields are superimposed on the bent solenoids.
Thus Maxwell’s equations are piecewise satisfied, but the fields suffer discontinuities at the
boundaries between straight and bent solenoids.

Figure 4 shows the orbits of 200 muons selected at random from within the Gaussian
phase volume specified in Table 2. The periodicity of the orbits with λB is readily evident
in the upstream part of the 3-T solenoid channel, but is washed out due to chromatic effects
by the end of the channel, which is about 7λB long.

3We use momentum spread of 0.05 rather than 0.03 as in Table 1 because the input beam to the FOFO
cooling experiment should have a momentum-amplitude correlation that increases the total momentum
spread.
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Table 2: Parameters of the optimized bent-solenoid muon channels with 800-
and 400-Mhz RF timing cavities.

Parameter Value Value

FRF 800 MHz 400 MHz
Pmuon 165 MeV/c 165 MeV/c
BGuide 0.55 T 0.55 T
Bs 3 T 1.5 T
θbend 1 rad 1 rad
Rbend 1 m 1 m
λB 1.15 m 2.30 m
Rs 15 cm 24 cm
Ls 4 m 4 m
Cost per 4-m section 0.71M$ 0.53M$
β� 36.7 cm 73.3 cm
σx = σy 17 mm 24 mm
σx′ = σy′ 47 mrad 33 mrad
Ltracking 43 cm 57 cm
n 33 clusters/m 33 clusters/m

Figure 4: Orbits of 200 muons chosen at random from within the Gaussian
phase volume specified in Table 2, projected onto horizontal and vertical planes
as a function of position along a 3-T bent-solenoid muon channel. The Larmor
wavelength, λB = 1.15 m, is evident in the upstream part of the channel.
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Figure 5 shows the x and y profiles of the beam at the beginning, middle (s = 3.5λB =
4.03 m) and end (s = 8 m = 6.96λB) of a 3-T solenoid channel. The profiles broaden after
the first bend due to the momentum dispersion, The second bend largely undoes the effects
of the dispersion. We see that σR,max =

√
σ2

x,max + σ2
y,max = 3.46 cm.

Figure 5: The distribution of muons along horizontal and vertical axes at
the beginning, middle (= RF timing cavity) and end of the upstream 3-T
bent-solenoid channel.

Figure 6 shows the radial profile of the beam at the same locations as in Fig. 5. The log
plot shows that the beam is confined to R < 10 cm to better than one part per 1,000.

Figure 7(a) shows the trajectories of muons that lie along the central ray upstream of the
first bend, but differ from the central momentum in increments of 1 MeV/c. The vertical
dispersion caused by the bent solenoid is evident. Figure 7(b) shows the vertical displacement
of the guiding ray or 200 random muons as a function of their momentum, in agreement with
eq. (29). The small width of the diagonal band is an indication of a small x-dependence to
the vertical momentum dispersion; this is caused by the ‘grad-B force’ that we have neglected
in the analytic discussions.

Figure 8 shows the x and y profiles of the beam at the beginning, middle (s = 1.5λB =
3.45 m) and end (s = 8 m = 3.48λB) of a 1.5-T solenoid channel. The profiles broaden after
the first bend due to the momentum dispersion, The second bend largely undoes the effects
of the dispersion. We find that σR,max =

√
σ2

x,max + σ2
y,max = 5.6 cm.

Figure 9 shows the rms width, σy,max of the vertical profile of the beam at the middle
(s = 1.5λB = 3.45 m) of a 1.5-T solenoid channel as a function of the input β�. The minimum
of σy,max occurs near β� = 73 cm, which confirms eq. (51) for the optimized β� as a function
of solenoid field.

Figures 5, 6 and 8 indicate that the rms x and y beam sizes have increased somewhat
during transport in the bent solenoid system. Likewise, the rms sizes of the x and y mo-
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Figure 6: The radial distribution of muons the beginning, middle (= RF
timing cavity) and end of the upstream 3-T bent-solenoid channel.

Figure 7: (a) Vertical projection of trajectories of muons that lie along the
central ray upstream of the first bend of a 3-T solenoid channel, but depart
from the central momentum by 1-MeV/c increments. The first bend covers
the interval s = [1.5, 2.5] m and the second covers [5.5,6.5] m. The vertical
momentum dispersion between the bent solenoids is evident. (b) Summary of
vertical deflection of the guiding ray of muons as a function of their momentum.
Compare to eq. (29).
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Figure 8: The distribution of muons along horizontal and vertical axes at
the beginning, middle (= RF timing cavity) and end of a 1.5-T bent-solenoid
channel.

Figure 9: The rms width of the distribution of muons along the vertical axis at
the middle (= RF timing cavity) of a 1.5-T bent-solenoid channel as a function
of β�. The input width is

√
εxβ

� with εx = 800π mm-mrad.
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mentums components will grow slightly, as shown in Fig. 10. Thus the transverse emittance
appears to have grown if it is calculated according to

ε⊥ = σxσyσPxσPy . (66)

Indeed, by this measure, ε⊥,in = 1.72 · 1.75 · 7.84 · 7.69 = 181.5 (cm-MeV/c)2, while ε⊥,out =
2.04 · 2.08 · 8.02 · 8.06 = 274.3 (cm-MeV/c)2,

However, since there is no dissipation in our model the total phase volume is conserved.
The shape of that volume is, however, distorted from the ellipsoid aligned along the coor-
dinate axes as assumed in eq. (66). A first measure of the distortion can be obtained by
examining the off-diagonal second moments, such as σ2

xy = 〈xy〉. Among the six such mo-
ments involving the four transverse-phase-space variables, only σ2

xPy
= 6.25 cm-MeV/c and

σ2
yPx

= 6.11 cm-MeV/c are significantly nonzero at the end of the bent-solenoid transport,
as shown in Fig. 11. A better estimate of the transverse emittance is then [6]

ε⊥,out =
√

(σ2
xσ

2
Py

− σ4
xPy

)(σ2
yσ

2
Px

− σ4
yPx

) = 233.3 (cm-MeV/c)2. (67)

About half the apparent emittance growth is accounted for in the first correction.
The apparent emittance growth is large for lower magnetic fields in the solenoid channel.

Figure 10: Distributions of x and y components of the muon momenta at the
beginning and end of a 3-T bent solenoid channel.

2.6.6 Remarks on Weighted Sampling Strategies

The apparent emittance growth in the bent-solenoid channel leads us to some general reflec-
tions on strategies.
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Figure 11: Distributions of xPy and yPx at the end of a 3-T bent solenoid
channel. The means of the distribution are the off-diagonal 2nd moments σ2

xPy

and σ2
yPx

. The units are m-MeV/c.

We must deliver a set of muons with a specified normalized emittance, represented by,
say, εx,N = 1500π mm-mrad, to the cooling experiment. We do not necessarily have to accept
a beam of that emittance at the entrance to the upstream solenoid channel.

For example, we could start with a smaller emittance and let it ‘grow’ to to the specified
emittance. Since it costs more to contain a beam of larger initial emittance, this might be a
useful strategy.

Because we propose to analyze individual muons and build up a ‘beam’ in software, we
have even more freedom along these lines.

In particular, we don’t have to achieve a perfect, uncorrelated Gaussian distribution of
particles in 6-D phase space. If the actual phase-space distribution of our muons has the
wrong shape, we can weight muon by muon to achieve the desired shape – so long as we
transmit a reasonably representative sample of muons.

If we want an experiment with 10,000 selected muons, and also want to keep track of
losses in the cooling apparatus to 1 part per 1,000, then no weight should be larger than 10
(compared to the average weight).

In the previous section we found in a simulation that the apparent emittance of the
beam increased by a factor of 1.5 in the solenoid channel. The larger apparent emittance
indicates that the density in phase volume is no longer as smooth as desired, but varies
only by factors of order 1.5 from an ideal uncorrelated distribution. We can apply software
weights to simulate the ideal bunch without undue risk of underrepresentation in any region
of phase space.
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There are other implications of such a selection strategy. Whether or not we use weights
we will have to collect more than 10,000 muons to select a subset of 10,000 that populate
phase volume in our desired manner.

A sense of this can be gotten from an argument based on time-reversal invariance. Sup-
pose we desired a set of completely uncorrelated muons at the output of the solenoid channel
(input to cooler) with a phase-space density ρ1 that has emittance ε1. Then our present study
can be used to tell us what the input distribution must be. We know from the simulation that
an input distribution {ρ1, ε1} propagates to an output distribution {ρ2, ε2}, calculating the
‘apparent’ emittance ε2 according to eq. (66). Since F = ma is time-reversal invariant, if we
started with the distribution {ρ2, ε2} but reversed all velocities (x′ → −x′, y′ → −y′), then
distribution {ρ2, ε2} would propagate into distribution {ρ1, ε1} (with velocities reversed).

In practice we could not arrange the input beam to have substructure such that the ‘true’
emittance is ε1 but the apparent emittance is ε2 > ε1. Instead, we would have to prepare
a beam with ‘true’ emittance ε2; this would guarantee that the output beam would contain
muons sufficient to form a bunch of emittance ε1 with no weighting. But a bunch with
‘true’ emittance ε2 contains more particles than the bunch of ‘apparent’ emittance ε2 which
happens to evolve into a bunch with ‘true’ emittance ε1.

The price of using unit weights will be both longer running time and higher magnet costs
than is the case for a well-chosen weighting strategy.

2.6.7 Optimization of Tracking-Device Parameters

The length of each tracking detector is set by eq. (35) to be

Ltracking =

(
1

θbend

P

eBs

σx,D

σP,D/P

√
720

n

)0.4

. (68)

The number of radiation lengths in the tracking device is proportional to nLtracking, which
should satisfy the limit (41). From eq. (68) we see that Ltracking varies as n−0.2, i.e., very
slowly with the ionization density n. Hence it is favored to reduce the ionization density
as much as possible, compatible with the chamber still being able to produce gas gain, in
exchange for a slightly longer tracking device.

We propose to use ionization density n = 33 cluster/m (3 cm between clusters). This
can be achieved in 10-Torr methane, for example. Then eq. (68) sets the tracking length as

Ltracking =

(
165 · 2 × 10−4

3 · 300 · 1 · 0.0014

√
720

33

)0.4

= 43 cm, (69)

assuming the solenoid bend angle is 1 radian, the detector spatial resolution is 200 μm and
that the desired momentum resolution is σP,D/P = 0.0014. The number of radiation lengths
in the methane gas of each tracking device would then be 0.000015, in compliance with
eq. (41).

The Larmor period for 165-MeV/c muons at Bs = 3 T is λB = 115 cm, so each tracking
detector observes the helix over an azimuth of 2.3 radians.
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Table 3: Required detector resolution to achieve measurement accuracy of
1% on the rms widths σi, assuming the detector resolution function is known
to 20%, i.e., δσD

/σD = 0.2.

Parameter Value

σx,D = σy,D 200 μm
σx′,D = σy′,D 5 mrad
σP,D/P 0.0014
σz,D 2 mm
σt,D 8 ps

2.7 Summary of Detector Requirements

The cooling apparatus is designed for a momentum acceptance of σP /P = 3%. Simula-
tions indicate that cooling of transverse emittance εN,x ≈ 1500π mm-mrad is achieved for
input bunch lengths only up to σz ≈ 1 cm. While the cooling apparatus reduces the trans-
verse emittance, the longitudinal emittance is expected to increase slightly, corresponding to
output bunch length of σz = 1.2 cm.

The criterion (14) that the detector resolution σi,D be less than 20% of the rms width σi

of phase-space parameter i is in some cases less restrictive than that required to extrapolate
the time measurement from the detector to the ends of the cooling apparatus. Table 3 sum-
marizes the requirements on detector resolution found in the several preceding arguments.

2.8 Measurement of the Detector Resolution

An important preliminary step in the cooling experiment is the determination of the various
detector resolutions σi,D and associated uncertainties δσi,D

needed to implement the analysis
according to eq. (8). A powerful technique for this would be the use of the ‘after’ arm of
the experiment to study the ‘before’ arm, and vice versa. To implement this the experiment
should be initially commissioned without the cooling apparatus present, and the two arms
should initially be positioned with no gap between them.

It seems likely that the relative uncertainty in detector resolution, δσD
/σD can be reduced

to much less than the 20% assumed above.

3 TM0,1,0 RF Timing Cavity

The conventional techniques of time measurement in high-energy physics have uncertainties
that are large compared to the desired resolution of 8 ps. In sec. 5 we consider an improve-
ment in ‘conventional’ timing methods that might be useful as an auxiliary measurement.
To attain the desired resolution we have examined the use of RF cavities that transform time
offsets into position, angle or energy (momentum) offsets, following initial studies by Rick
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Fernow. Such techniques have been considered earlier by Haimson [7]. We presume the RF
timing cavity would operate at the same frequency as does the cooling apparatus, namely
800 MHz.

We first considered a TE0,1,1 cavity which displaces the beam in x without changing its
angle [8]. However, the displacement is quite small, only 6 μm/ps over a length of 20 cm
with a peak field of 40 MV/m in the cavity. A measurement of this displacement would
be limited by the uncertainty in the extrapolation of the trajectory across the cavity. The
displacement of 6 μm/ps corresponds to an angle of 30 μrad/ps across the cavity, which is
minute compared to the angular uncertainty of 6 mrad that can be tolerated in measurement
of the other phase-space coordinates.

We next considered a TM2,1,0 cavity which deflects the angle of the beam by 90 μrad/ps,
i.e., about three times the effective deflection of the TE0,1,1 cavity [9]. This effect is still very
marginal.

An alternative scheme to determine the longitudinal position of a muon with the bunch is
to measure its momentum, accelerate it in a cavity phased to null at the center of the bunch,
and measure the momentum again [10]. The momentum difference is then proportional to
the longitudinal position. This scheme gives results that are independent of the amount of
multiple scattering in the RF cavity. As shown below, straggling will not present a problem
either. The required momentum resolution is comparable to that desired for the momentum
measurement by itself. It would be even more advantageous to use a 4- or 8-cell accelerating
cavity of the same design as for the FOFO cooling section, but phased by 90◦.

3.1 Cylindrical TM0,1,0 Cavity Fields

The rf cavity is centered on (x, y, z) = (0, 0, 0), and is a cylindrical can of radius a and length
b along the beam direction z.

The trajectory of a typical beam particle for the cavity field OFF is parametrized as

x = x0 + βxct,

y = y0 + βyct, (70)

z = z0 + βzct,

where c is the speed of light. The beam axis is the z-axis:

βx, βy 	 βz, and βz ≈ β. (71)

We will make the impulse approximation that the cavity fields do not affect the muon
trajectories in y or z, but only in x. Thus we assume the y and z parametrizations in (1)
also hold when the field is on.

The particle is within the cavity during the interval

[tmin, tmax] =

[
− b

2βzc
− z0

βzc
,

b

2βzc
− z0

βzc

]
. (72)

The wave equation tells us that for a cylindrical TM0,1,0 cavity of radius a, diameter d
and length b along the z-axis,

ω

c
=

2.405

a
, so d = 2a =

2.405

π
λ = 0.766λ. (73)
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The fields in the cylindrical cavity whose electric field vanishes at t = 0 are (in Gaussian
units)

Er = Eφ = 0,

Ez = E0J0

(
2.405r

a

)
sinωt,

Bφ = E0J1

(
2.405r

a

)
cos ωt,

Br = Bz = 0. (74)

3.2 Energy Gain: Leading Approximation

The gain in energy, ΔU , when a muon traverses the cavity is

ΔU = e

∫
Ezdz = eβzc

∫ tmax

tmin

Ezdt = eβzcE0

∫ tmax

tmin

J0

(
2.405r

a

)
sinωt dt

≈ eβzcE0

∫ tmax

tmin

sin ωt dt =
βzceE0

ω
(cos ωtmin − cos ωtmax)

≈ −βzceE0

ω

2ωz0

βzc
sin

ωb

2βzc
= −2eE0z0 = −2eE0βzcΔt, (75)

using eq. (72) and supposing that the transverse size of the beam is small compare to a. In
eq. (75) we have put b = βzλ/2 to maximize ΔU .

From eq. (75) we see that ΔU depends on the x and y positions and slopes only in second
order.

For a peak field of E0 = 40 MV/m, and 165 MeV/c muons for which βz = 0.84, we have

ΔU = 0.02 [MeV]

[
Δt

1 ps

]
. (76)

Since UΔU = c2PΔP , the energy gain corresponds to a relative momentum change

ΔP

P
=

2eE0βzcΔt

βcP
=

2 · 40 [Mv/m] · 3 × 10−4 [m/ps] · Δt [ps]

165 [MeV/c] · c = 0.00014

[
Δt

1 ps

]
. (77)

3.3 Discussion

It would be advantageous to use a 4- or 8-cell accelerating cavity of the same design as for the
FOFO cooling section. Present parameters for these structures are a length of b = λβz/3 =
10.5 cm per cell, and inner radius 14.6 cm. Because each cell is only 2/3 of the length we
assumed in eq. (75) the timing correlation per cell is reduced by sin(60◦) = 0.866. The total
correlation over, say, 8 cells is then

ΔP

P
= 8 · 0.87 · 0.00014 = 0.001

[
Δt

1 ps

]
. (78)

Thus we would require a momentum resolution of σP/P = 0.008 to achieve a timing resolu-
tion of 8 ps = 0.2σt, in line with our general goal for all six phase-space parameters.
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3.4 Straggling

An advantage of the timing measurement via an accelerating cavity is that multiple scattering
within the RF cavity does not affect the time resolution. [Multiple scattering in the momen-
tum spectrometer is, of course, a limiting factor in the momentum resolution.] However, the
timing resolution will be degraded by straggling in the cavity walls and surrounding detec-
tors. An approximate expression for momentum straggling [Rossi, High Energy Particles,
p. 31, eqs. (8) and (9) with E ′

max ≈ 2γ2β2mec
2] is

σP,straggling =
γremec

2

βc

√
2πN0

Z

A
s

(
1 − β2

2

)
≈ 0.43 [MeV/c]

√[
s

1 g/cm2

]
, (79)

where re is the classical electron radius, N0 is Avagadro’s number and s is the amount of
material. The numerical result holds for Z/A = 1/2, and β = 0.84.

The momentum smearing due to straggling should be small compared to the desired
resolution, i.e., small compared to σP,D = 0.006P = 1 MeV/c for P = 165 MeV/c. Then
the total material in the walls of the timing cavity plus surrounding chambers must satisfy

s <
(σP,D

0.43

)2

=

(
1

0.43

)2

= 5 [g/cm2]. (80)

This places very little constraint on the choice of materials.

3.5 The Need for an Auxiliary Timing Measurement

The linear correlation between time offset and momentum change given in (77) holds only
for muons within about ±λ/8 of the desired bunch center. The general relation is that the
momentum change varies as sin(2πt/T ) where T is the RF period. Thus the interpretation
of the momentum offset becomes ambiguous for muons with t not near nT .

To remove this ambiguity there must be an auxiliary time measurement that locates the
time to ≈ T/4 = 300 ps. This is achievable by relatively ‘conventional’ techniques, as will
be discussed in sec. 7.

4 The Tracking Time Projection Chambers

Multiple scattering in the material of the tracking system will limit its performance in mea-
suring the angles, and hence momenta of the low-momentum muons in the cooling exper-
iment. From eq. (41) we concluded that the nominal goal of a momentum resolution of
σP /P = 0.0014 can be achieved only if the relevant material contains less than 0.0002 ra-
diation lengths. Since one meter of air contains about 0.003 radiation lengths the tracking
detector will have to be very low mass by usual standards.

Therefore we are exploring a design in which the entire beam-transport region is held at
low pressure and filled with a gas such as methane, ethane or isobutane that is suitable for
gas amplification of ionized electrons.

Low-pressure gas tracking devices appear to have been introduced by Binon et al. [11]
(in consultation with Charpak), and have long been championed by Breskin [12]-[18]. They
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have been studied at Fermilab by Anderson [19, 20] and by the present authors as well
[21]. Low-pressure hydrocarbon gases are preferred over noble gases because of the superior
stability of the former against UV-photon feedback.

4.1 Gas Gain

We anticipate the need to operate the TPC with a gas gain of 105 (signal/preamp noise
≈ 20 : 1, which will permit good interpolation in space and time via charge sharing). Figures
12 and 13 show gain spectra of single-photoelectron avalanches a proportional chamber with a
wire anode and filled with CH4 or C2H6 gas. The technique of producing single-photoelectron
avalanches via a 1-ns pulse from a N2 laser incident on an aluminum cathode has been
described by us in ref. [21].

Figure 12: Gain spectra for single-photoelectron avalanches in CH4 gas at
various pressures.

At low pressure, the gain sprectrum in methane does not show a clear peak, and chamber
operation is unstable at high gas gains. We interpret this behavior as due to the high
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Figure 13: Gain spectra for single-photoelectron avalanches in C2H6, and
He/C2H6 mixtures at various pressures.

probability of secondary avalanches in methane initiated by UV photons from the primary
avalanche. Both ethane and isobutane have better “quenching” of the UV photons and show
gain spectra with peaks, corresponding to more stable chamber operation. A related feature
is that a lower voltage is required to achieve a given effective gain in methane than in ethane
or isobutane, due to the larger contribution of secondary avalanches in the former gas.

If the tracking chambers can be operated near room temperature, an interesting option
would be a helium/isobutane mixture, such as 90/10, which has good gain characteristics
for very low total gas pressure.

4.2 Ionization Density

The ionization density by minimum ionizing particles in atmospheric-pressure methane,
ethane and isobutane has been reported by Va’vra [22] as 25, 41, and 84 primary clus-
ters per cm, respectively. A 165-Mev/c muon ionizes at about 1.2 times minimum, so the
primary ionization density would be 30, 49 and 100 clusters/cm for the three gases. If we
desire an average of one primary cluster per 3 cm in our low-pressure tracking device, as
argued in sec. 2.6.5, the chamber pressure could then be 8.4, 5.2 or 2.5 Torr for the three
gases (at 20◦C).

These and other parameters of the low-pressure gases are summarized in Table 4.
At pressures below 10 Torr methane is still a gas at 77◦K, liquid-nitrogen temperature.

To save on operating costs of the superconducting solenoid channel it is favorable to run
the detector near liquid-nitrogen temperature, which indicates methane to be the preferred
chamber gas.
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Table 4: Parameters for ionization of hydrocarbon gases at low pressure by
165-MeV/c muons.

Parameter Methane Ethane Isobutane

Atomic number 16 30 58
Primary clusters/cm (1 atm., 20◦C 30 49 100
Pressure (Torr, 20◦C) 8.4 5.2 2.5
Pressure (Torr, 77◦K) 2.2 – –
Primary clusters/cm 1/3 1/3 1/3
Boiling temp. (◦K, 1 atm.) 112 185 231
Boiling temp. (◦K, 10 Torr) 77.7 130 195
Boiling temp. (◦K, 1 Torr) 67.3 114 172
Radiation lengths/m 0.000017 0.00002 0.00002
Saturation E field (V/cm) 10 8.8 6
Saturation drift velocity (μm/ns) 100 50 40
Drift time over 45 cm (μsec) 4.5 9.0 11.25

The ionization density is, strictly speaking, a function of the gas density, not pressure.
To maintain a given ionization density while lowering the temperature, the pressure should
be reduced so P/T remains constant. Thus the ionization density of 1/3 per cm in methane
at 77◦K requires a pressure of only 2.2 Torr.

4.3 Radiation Lengths and Momentum Resolution

The number of radiation lengths per meter at these low pressures (strictly, low gas densities)
would then be 0.000017, 0.00002 and 0.00002 for methane, ethane and isobutane, respectively.
The momentum resolution would then be limited to σP /P = 0.0007 according to expression
(41) for any of the three gases, assuming the chamber gas occupies the entire over 2.5-m
length of the spectrometer. Thus we can achieve momentum resolution about two times
better than the baseline goal of Table 3.

4.4 The Drift Velocity

The drift velocity of ionized electrons is a function of E/P where E is the applied electric
field and P is the gas pressure.4 The saturation drift velocity is independent of pressure, but
is achieved for very low electric fields at low pressures, as can be inferred from Fig. 14.

Thus if we operate with 8.4-Torr methane the drift velocity would saturate at 100 μm/ns
at a field of 10 V/cm. For ethane at 5.2 Torr the saturation drift velocity is 50 μm/ns at a
field of 8.8 V/m, and for isobutane at 2.5 Torr the saturation drift velocity is 40 μm/ns at
a field of 6 V/m.

4Strictly, the dependence of drift velocity is on E/N where N is the density. It is convenient to calculate
the drift velocity using data at 20◦C.
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Figure 14: Drift velocity of electrons in hydrocarbon gases as a function of
the reduced electric field E/P . From ref. [23].

4.5 The Time Projection Chamber

We have chosen a gas pressure so as the yield one primary ionization cluster per 3 cm of the
muon trajectory. For good fitting of the helical tracks in the solenoid magnetic field there
should be at least 10 clusters per track segment. Indeed, eq. (69) indicates that an optimized
tracking device with this ionization density should be 45 cm long, providing 15 samples per
track.

The tracking device must reconstruct the helical orbit of the muons in the solenoid field.
In particular, the coordinates of the guiding ray of that helix must be measured. This
requires similar accuracy in the measurement of both transverse coordinates.

A natural configuration of the tracking detector is then for the ionized electrons to drift
along the magnetic field lines to be observed at a plane of x-y pads perpendicular to the
magnetic field. The chamber electric field is then parallel to the magnetic field. This detector
configuration can be called a time projection chamber, and is shown in Fig. 3.

The collection electrode would be on the end of the detector away from the bent solenoid,
so multiple scattering in this electrode would have no influence on the momentum measure.
However, the TPC geometry would then require a field-shaping cathode on the end of the
chamber towards the bend. For simplicity of construction, this cathode should be a thin foil.
Then the foil should be less than 0.000017 radiation lengths thick = radiation lengths in 1
m of the chamber gas. A 5-μm-thick beryllium foil would suffice.
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An alternative chamber geometry could involve the electric field transverse to the mag-
netic field. This would have the advantage the no chamber electrode need intercept the
beam. Flat electrodes 20 cm wide, 45 cm long and 20 cm apart would just fit inside the
proposed 15 cm inner radius of the solenoid channel. The Lorentz angle of the drifting elec-
trons would be large, and there would be some inherent difference in the quality of the x
and y reconstruction. Because the 3-dimensional helix must be reconstructed, both x and y
coordinates must be measured simultaneously. Thus a pad readout is again required, with a
similar channel count as for the TPC. Also, a compact geometry along the beam axis would
required foils with graded-potential electrodes perpendicular to the beam at the ends of the
chamber.

Continuing with the discussion of the TPC option, in the anode region of the detector
we must achieve gas amplification and signal pickup with good sensitivity to both x and y
position. And of course, the readout must be capable of sampling in time during the arrival
of the various clusters created along the trajectory.

A simple electrode configuration is shown in Fig. 3. The low-electric-field drift region
is terminate by a transparent wire mesh grid. For example, stainless-steel wire mesh with
250-μm pitch and 80% (or even 90%) transparency is commercially available. The anode is
a wire mesh of the same type, separated from the grid by a gap of a few mm. A voltage of
less than 1000 V between the grid and anode will permit gas gain of up to 106, as shown in
Fig. 15 from ref. [14].

Since the anode-mesh pitch is 250 μm, an rms transverse position resolution of 100 μm is
possible, if the readout is sufficiently sensitive. To maintain this resolution for clusters that
have drifted up to 45 cm, the drift path of the electrons must be well understood. This will
be best insured if the active drift volume is in a region of very uniform magnetic field. Thus
the detectors should be in straight solenoid sections and at least one solenoid diameter away
from ends and transitions. To match the solenoid beam optics, we place the TPC’s about
50 from the end of the straight solenoids. Then the central path length in each momentum
spectrometer is 2.5 m.

Should gas gains in the range 106-108 be desirable, a so-called multistep electrode con-
figuration could be used, as shown in Fig. 16 from ref. [18]. A short drift section (transfer
gap) after the first amplification gap permits the avalanche to diffuse transversely before en-
countering the second amplification gap. The broader avalanche is less prone to UV-photon
feedback instabilities and can be brought to higher gain.

4.6 Cathode Pad Plane

The signal is not read directly from the anode. Instead the signal is based on the charge
induced on a segmented cathode pad plane a few mm from the anode. We anticipate a
channel count of about 1250 pads in each of the eight TPC’s, for a total of 10,000 readout
channels. For example, if the pad-plane radius is 10 cm, each pad would be 5 × 5 mm2 in
area.

To achieve a transverse position resolution of 200 μm, the cluster centroid must then be
determined to 1/25 of the pad width. This can be achieve by measurement of charge sharing
on the pads. Modelling [24] and experiment [25] indicate that for this the ratio of gas gain to
channel noise must then be greater than 25:1. For a readout with electronic noise of about
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Figure 15: Gas gains achieved in single-step and multistep avalanche chambers
filled with low-pressure isobutane. From ref. [14]

2 × 103 electrons the gas gain must then be at least 105. This should be well within the
stable region of operation of a single-gap chamber.

The expected chamber performance is summarized in Table 5.

Table 5: Resolution of the low-pressure TPC for 165-MeV/c muons, assuming
its length is 45 cm. The device performance is essentially independent of
whether methane, ethane or isobutane gas is used.

Parameter Value

σP /P over 2 m 0.0015
σx = σy (μm) 200
σ′

x = σ′
y for 20 cm drift 0.001

σt (ns) 5
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Figure 16: Electrode configuration for a multistep time projection chamber.
From ref. [18]

4.7 Time Sampling

As noted in Table 4, the ionization electrons drift across the 45-cm-long chamber for 4.5-11
μsec. To this time must be added the desired livetime of the chamber, which depends on the
filling characteristics of the RF cavities. These are expected to have a good fill for of order
5 μsec. Hence the total chamber live time is desired to be about 10 μsec. The beam cycle is
expected to be 1-15 Hz.

To reconstruct the muon trajectories in space, the longitudinal position of each cluster
must be reconstructed to about the same accuracy as its transverse coordinates, i.e., to
200 μm. If we use methane as the chamber gas, then 200 μm corresponds to 2 ns of drift,
according to Table 4. Thus the drift time of each cluster must be measured to about 2 ns.

This can be accomplished by recording the signal size in a sequence of time samples sep-
arated by several times the desired time resolution. An example of such a readout scheme
is given in ref. [26]. For example, we could sample every 20 ns (50 MHz), or at 10 times the
desired resolution. The signal:noise need only be about 10:1 to perform the time interpola-
tion.

The average time separation between clusters in methane is 300 ns. There would be an
average of 15 samples between clusters arriving from a trajectory exactly along the field
lines, so confusion between adjacent cluster should be tolerably small. The total number of
samples in the 10-μs detector live time is 500.

These parameters are well matched to the use of switched-capacitor arrays (SCA’s) for
analog-pipeline storage of the samples. Figure 17 sketches the concept of an SCA. Figure 18
shows a waveform transmitted through a 128-deep SCA, retaining 12-bit dynamic range.
Figure 19 shows that SCA time sampling can be used to resolve pulse times to an accuracy
better than 1% of the sampling interval.

The 512 16-channel SCA/ADC chip designed by S. Kleinfelder [27, 28] for the STAR
TPC would be a good choice for the present experiment. Some R&D is needed to verify the
performance of this SCA at 50 MHz, which is slightly beyond the range presently charac-
terized [29]. The 16-channels of an SCA are multiplexed to a slow (≈ 1 MHz) 12-bit ADC
(on the SCA chip), permitting the 16 × 512 samples stored in each chip to be digitized in 8
msec between beam pulses. Each TPC would be instrumented with 80 16-channel preamps
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Figure 17: Sketch of the concept of a switched-capacitor array.

Figure 18: A waveform transmitted through a 128-deep SCA, retaining 12-bit
dynamic range.

(for example, the STAR chip [30, 31] which can be set to a 100-ns shaping time via control
voltages) and SCA chips that would be mounted at 1-cm intervals around the circumference
of the cathode pad plane inside the detector pressure vessel. Each SCA/ADC chip dissipates
only 0.1 Watt, and the STAR preamp chips dissipates 0.75 Watt; each TPC would dissipate
about 75 Watt. The system cost of the STAR TPC readout electronics is about $33/channel
[29]

The Princeton group has built detector readouts based on 128-deep switched-capacitor
arrays [32, 33].

An alternate sampling scheme could be based on use of one 25-MHz flash ADC for each
of the 10,000 readout channels.

4.8 Rate Capability

Each TPC would have 1250 channels with 500 time samples each, for a total of some 600,000
x-y-t pixels. Each muon contributes about 20 clusters. Each cluster occupies about 33 = 27
pixels, or about 500 pixels/track. Then 1200 muons would result in 100% occupancy. A safe
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Figure 19: An SCA sampling at 400-ns intervals can resolve the pulse time
to 3 ns.

operating regime would be about 10 muons per beam pulse.
The data rate would be about 5,000 samples/pulse, or 75,000 samples/sec at 15-Hz beam

rate.

4.9 Diffusion

The preceding discussion has ignored the effect of diffusion on the detector resolution. This
is a potentially serious problem in view of the long drift path in the proposed TPC. Fur-
thermore, since the diffusion coefficient is proportional to the mean free path of the drifting
electrons, diffusion is more pronounced at low pressures [34, 35]. [The Princeton group has
demonstrated this effect in past detector studies [36].]

Our analysis must take into account the presence of the electric and magnetic fields. The
case of E ‖ B is, however, somewhat simpler to treat than E ⊥ B.

First, it is important to recall that a major goal of the tracking system is to measure
velocity of the muon along beam axis, as needed to extrapolate the muon timing from
the RF timing cavity to the entrance of the cooling apparatus. This leads to a demanding
requirement on measurement of total momentum, and a weaker requirement on measurement
of the track angle.

Recall also that measurement of total momentum in a bent-solenoid spectrometer is
accomplished through measurement of the vertical offset of the guiding ray of the muon tra-
jectory before and after the bent solenoid. For this measurement only transverse coordinates
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of the muon trajectory are needed. Measurement of the track angle requires both transverse
and longitudinal coordinates.

4.9.1 Transverse Diffusion

The solenoid field suppresses the transverse diffusion; the transverse mean free path is always
less than twice the Larmor radius rB , which is typically much less than the longitudinal mean
free path. So despite the longer (longitudinal) mean free path at low pressure, transverse
diffusion does not lead to difficulties for our measurements.

We begin more detailed discussion with consideration of the effect of pressure and electric
field. Recall that the diffusion coefficient D is defined such that the rms spread σ of the
electron’s position (along some axis) after time t is

σ =
√

2Dt =

√
2Dz

vd
, (81)

where the second form holds when the electron has a drift velocity vd, and z is the drift
distance.

The saturation drift velocity is vd ≈ 107 cm/s for methane, according to Fig. 14, which
occurs for electric fields of about 1000 V/cm at STP. Then from Fig. 20 we deduce that the
diffusion coefficient for methane is D ≈ 3000 cm2s−1 at STP.

Figure 20: Diffusion over a 1 cm drift path for various gases. From [35].

We propose to adjust the pressure P , temperature T and electric field E to keep the drift
velocity at saturation. Hence it is convenient to use a relation for the diffusion coefficient
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given by Einstein (see. eq. 31.13 of [34]):

D ≈ vdkT

eE
, (82)

where k is Boltzmann’s constant. With kT ≈ 1/40 eV, eq. (82) predicts D ≈ 2500 cm2s−1

for methane at STP, in reasonable agreement with data.
Equation (82) then leads to the scaling law

D(E, T ) =
T

T0

E0

E
D(E0, T0). (83)

For example, we are considering the merits of methane as a chamber gas, operating at
T ≈ 100K, and at pressure such that the drift velocity is saturated for E = 10 V/cm. Then
from eq. (83) we infer that D(100, 10) = 33D(300, 1000) = 105 cm2s−1.

The scaled diffusion coefficient just deduced applies to the case of zero magnetic field, and
to longitudinal diffusion when E ‖ B. In the latter case the transverse diffusion coefficient
is reduced by a factor

rB

l
=

vd/ωB

vdτ
=

1

ωBτ
, (84)

where rB and ωB are the Larmor radius and frequency of the electron in magnetic field B,
l is the mean free path and τ is the mean time between collisions of the electron with gas
molecules (see eq. 13.8 of [34]). The Larmor frequency is given by

ωB = 1.8 × 1011 Hz × B [Tesla], (85)

so ωB ≈ 5× 1011 Hz for B = 3 T. The collision time can be deduced from the basic relation
for the drift velocity in terms of the electric field,

vd ≈ eE

m
τ, (86)

so τ ≈ 6 × 10−9 s when E = 10 V/cm.
The transverse diffusion coefficient is therefore suppressed by a factor 1/ωBτ ≈ 1/3000

compared to the longitudinal coefficient. That is, D⊥ ≈ 33 cm2s−1 at the proposed operating
conditions. Even at the maximum drift distance of 45 cm, the uncertainty in transverse
position due to diffusion is

σ⊥,diffusion(45 cm) ≈
√

2 · 33 · 45
107

cm = 170 μm. (87)

That is, transverse diffusion for low-pressure, low-temperature methane leads to a position
uncertainty that is less than our expected electronic resolution.

Note also that eqs. (82), (84) and (86) can be combined to yield

D⊥ ≈ kT

mωB

, (88)

for transverse diffusion in a magnetic field. The result is actually independent of pressure,
and is smaller for low temperatures and high magnetic fields!
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4.9.2 Longitudinal Diffusion

The longitudinal diffusion coefficient for electron drift at the saturation velocity vd = 107

cm/s in methane at 100◦K and 0.01 atmosphere was found from eqs. (82) and (83) and
Fig. 20 to be D‖ = 105 cm2s−1. The resulting smearing of the location of an electron drifting
along the (parallel) lines of fields E and B is

σz =

√
2D‖x

vd
≡ A

√
z, (89)

where A = 0.135 cm
1
2 . This is a significant uncertainty, and reduces the accuracy with which

we could reconstruct the angle θ of the helical muon trajectory with respect to its guiding
ray.

We estimate this uncertainty by supposing the tracking data is represented as a set of
transverse coordinates ui measured at longitudinal coordinates zi. Coordinate u is measured
on the surface of the helix and is orthogonal to z. Then we expect u = z tan θ ≈ zθ. We
ignore the error in the measurement of u in comparison to that on the measurement of z.
From the chi square

χ2 =

N∑
i

(zi − ui/θ)2

σ2
zi

=

N∑
i

(zi − ui/θ)
2

A2zi
, (90)

we deduce that
1

σ2
θ

=
∂χ2

∂θ2 , and hence σθ = Aθ

√
θ

Nz
, (91)

for N measurements at (roughly) uniform intervals over total length z. In the proposed
configuration, N = 15, z = 45 cm, and the characteristic angle is θrms = 0.05 (Table 2). In
this case we estimate

σθ,diffusion ≈ 0.00006, and
σθ,diffusion

θ
≈ 0.0012. (92)

Thus despite sizable longitudinal diffusion, we should be able to measure track angles to
the accuracy specified in Table 3, and also to the accuracy claimed in Table 5 for the TPC
detector.

4.9.3 Diffusion When E ⊥ B

Another possible configuration for the electrodes of the tracking chamber is such that the
drift electric field E is transverse to the magnetic field B. As is well known, the drift path
then includes a component in the direction of E × B. Of greater importance in the present
case is the fact that the drift vd velocity remains perpendicular to the magnetic field B,
and so the component of the mean free path along the drift direction is reduced by a factor
rB/l = 1/3000, the ratio of the Larmor radius to the mean free path in zero magnetic field.
In turn, the drift velocity is reduced by this factor and is now very slow: vd ≈ 3× 103 cm/s.

The transverse and longitudinal diffusion coefficients are the same as calculated for the
case E ‖ B. However, because the electrons drift for much longer times, the smearing due
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to diffusion is much greater. Indeed, for a typical drift of r = 10 cm from the center of the
chamber to the electrode at its outer radius,

σ⊥ =

√
2D⊥r

vd
=

√
2 · 33 · 10
3 × 103

= 0.46 cm, σ‖ =

√
2D‖r
vd

=

√
2 · 105 · 10
3 × 103

= 26 cm. (93)

These large uncertainties apply to all electrons along a muon track, which is roughly parallel
to B.

It appears that a configuration with E ⊥ B is unsuitable for a low-pressure, long-drift-
path detector.

4.10 Delta Rays

In general, when an atom of chamber gas is ionized by a high-energy charged particle, the
ionization electron has sufficient energy to ionize additional atoms some distance away. Thus,
each primary ionization leads to a cluster of ionization, also called a δ-ray, which can have
large spatial extent in some cases. The spatial extent of the cluster is larger for lower-pressure
gases. Does this effect compromise the chamber resolution?

Cluster measurements for hydrocarbon gases have been reported by Fischle et al. [37],
with the approximate result that the average number of electrons per cluster is 1.5, with a
probability distribution P (n) ∝ n−5/2, or equivalently, P (n > n0) = (2n0)

−3/2. Further, the
average energy needed to create an ion pair is 30 eV. For example, clusters of more than
10 electrons occur about 1% of the time, corresponding to the primary ionization electron
being produces with about 300 eV.

As for the case of diffusion, the strong magnetic field confines the motion of the ionization
electrons to helices of very small radii, given by

r[m] =
p[MeV/c]

300B[T]
=

√
KE[MeV]

300B[T]
. (94)

For B = 3 T and KE = 100 eV, the helix radius is only 10 μm; even for KE = 10 keV,
the radius is only 100 μm. Thus, δ-rays will have neglible effect on the transverse position
resolution of the TPC.

It remains to characterize the effect of δ-rays on the longitudinal position resolution,
where the spatial extent of the cluster is the same as in the absence of the the magnetic field.
We estimate the spatial extent of a typical cluster of, say, 2 electron by three methods:

1. The cluster size is roughly equal to the mean free path of a 30-eV electron. This is
also roughly equal to the mean free path of the drifting electrons. From information
presented in sec. 4.9.1, we estimate this as l = vdτ = 107 × 6 × 10−9 = 0.06 cm = 600
μm for methane at 8.4 Torr.

2. If we suppose that the cross section σ for ionization of an atom is about 10−16 cm2, then
at 1/100 atmosphere at 20◦C where the number density ρ is NA/22, 400/100 ≈ 2.7×1017

atoms/cm3, the mean free path for ionization is l = 1/ρσ ≈ 1/27cm ≈ 400 μm.
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3. A semi-empirical expression for the range of keV electrons in matter of molecular weight
A, Z electrons/atom and mass density ρ g/cm3 has been given by Feldman [38] as

Range[μm] ≈ 0.025
A

ρZp/2
(KE[MeV])p, where p =

1.2

1 − 0.29 log10 Z
. (95)

For methane, A = 16, Z = 10, so the power is p = 1.69. At 1/100 atmosphere the mass
density is 7.2× 10−6 g/cm3. Then, eq. (95) predicts a range of 8000 (KE[keV])1.69 μm.
For, say, KE = 100 eV, the predicted range is 160 μm.

Comparing the three estimates, we take 500 μm as the typical longitudinal cluster size for
methane at 1/100 atmosphere. While large, this is still smaller than longitudinal diffusion
for a drift of 1 cm, as found in sec. 4.9.2, and so will not be a problem.

A cluster of n electrons will have longitudinal extent of (n − 1)500 μm, and rms size
1/
√

12 times this: σn ≈ (n − 1)144 μm. For n = 10 this is similar to the longitudinal
diffusion for the first cluster, whose drift distance is typically 1.5 cm. However, a cluster
with n = 10 occurs only about 1% of the time, as noted above.

5 Auxiliary Timing Detector

In sec. 3.5 we noted that the RF timing technique is ambiguous for times too far off nominal.
Hence we need an auxiliary timing device, capable of resolution the muon time to about 300
psec.

In fields of 1.5 Tesla of less, 100-150-psec timing is possible using Hamamatsu fine-mesh
photomultipliers coupled to scintillator bars [39]. However, for fields above 1 Tesla the signal
in the fine-mesh tubes drops precipitously. In contrast, the performance of microchannel-
plate photomultipliers (MCP-PMT’s) is hardly affected by a magnetic field aligned along
the tube axis [40].

5.1 Fine-Mesh Photomultipliers Viewing Scintillator Bars

If the bent solenoid channel can operate at a field of 1.5 T or less the preferred option for the
auxiliary timing detector will be Hamamatsu fine-mesh photomultipliers viewing scintillator
bars. A candidate device is Hamamatsu model R5504 [41] whose outer diameter is 51 mm
with a 36-mm diameter photocathode. The cost is about $5k each.

Figure 21 shows how these PMT’s might be arranged inside the solenoid channel to
provide coverage over a radius of 10 cm.

Improved timing could be obtained by coupling the PMT’s to quartz bars rather than
scintillator, since the intrinsic time scale of the Čerenkov radiation process is femtoseconds
compared to nanoseconds for scintillation. Indeed, time resolutions as good as σt = 30 ps
have been reported in a recent study [42].

5.2 Microchannel-Plate PMT’s Viewing Čerenkov Radiation

Should the auxiliary timing detector have to operate in a magnetic field above 1.5 Tesla,
the principal option is microchannel-plate PMT’s. These are more costly (≈ $10k each) and
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Figure 21: Sketch of a possible arrangement of 12 Hamamatsu R5504 fine-
mesh PMT’s viewing six 3.33 × 3.33 cm2 scintillator bars entirely within the
30-cm-diameter, 1.5-T solenoid channel. Six PMT’s face upstream and six face
downstream.

have smaller photocathodes (11-mm diameter) than fine-mesh PMT’s.
The timing capability of an MCP-PMT is, however, superior. Figure 22 shows the transit-

time spectrum for a Hamamatsu R3809 and an R2809 MCP-PMT [43]. From the data
shown, the R3809 device is capable of time resolution of σt = 12 ps for single photoelectrons,
if the signal is not degraded by associated pulse-shaping electronics. For a signal of n
photoelectrons, the time resolution might improve by a factor of 1/

√
n under favorable

circumstances.

5.2.1 Bench Test of MCP-PMT Timing

We have tested the timing capability of two R3809 MCP-PMT’s in the configuration shown
in Fig. 23 [44]. A Sr90 β source impinges on a 3-mm-thick quartz plate. A portion of the β
spectrum has momentum such that the Čerenkov angle is 45◦ after the light emerges from
the quartz plate. The two R3809 MCP-PMT’s were placed 90◦ apart, and the time difference
measured between the first Čerenkov photon in each device. The results are shown in Fig. 24,
and indicates σt = 55/

√
2 = 39 ps for each device in this test. The signal in each detector

was due to a single photoelectron in most cases.
While we speculate that this result is larger than that claimed by Hamamatsu due to

jitter in the discriminator we used, this has not been studied further to date.
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Figure 22: Spectrum of transit-time jitter in a Hamamatsu R3809 MCP-PMT.

5.2.2 MCP-PMT Configuration for the Cooling Experiment

Quartz has an index of refraction of n ≈ 1.47 for visible light, and so the minimum angle
of incidence for internal reflection is 43◦. Muons of 165 MeV/c have β = 0.84 and the
corresponding Čerenkov angle is 36◦. Hence, no Čerenkov light is internally reflected for
165-MeV/c muons at normal incidence to a quartz bar.

The muons must have angle of incidence at least 7◦ for any Čerenkov light to be internally
reflected. The optimal angle of incidence is 54◦, in which case one ray of the Čerenkov cone
points directly down the bar.

Figure 25 illustrates a configuration in which the average angle of incidence would be
45◦. To minimize the path length, the quartz bars are arranged in two arrays at ±45◦ to the
muon beam. The bars are read out only at the end in the direction of the forward Čerenkov
light.

The active area of the photocathode of R3809U MCP-PMT’s is only 11 mm in diameter,
so each tube is matched to a quartz bar of 1× 1 cm2 cross section. Since the diameter of the
MCP-PMT’s is considerably larger than 1 cm, most bars must have an angled light guide to
bring the light to locations where different tubes don’t interfere with one another. Figure 25
shows how this might be accomplished if the R3809U devices could be repackaged into a 3
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Figure 23: Layout of the timing test of two R3809 MCP-PMT’s.

Figure 24: Distribution of time differences between Čerenkov light received
by two R3809 MCP-PMT’s.

cm diameter; since the basic structure of the MCP-PMT is 2.5 cm in diameter this may be
possible.

A key question is whether such a detector could produce time resolution better than the
single-photoelectron transit-time jitter, which is 12 ps (σ) for the R3809U MCP-PMT’s.

To answer this, simulation of timing performance of such an array has been made with an
EXCEL spreadsheet developed by Mats Selen in association with ref. [42]. This simulation
includes the effects of dispersion and phototube quantum efficiency, and is well validated by
data [42].

Some preliminary conclusions are reported here; extensive updates will follow shortly.
We use the simulation to calculate the time of arrival of each Čerenkov photon at the

face of the PMT, and record only those photons that produce photoelectrons according to a
cut based on the PMT quantum-efficiency spectrum. For example, the rms spread in arrival
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Figure 25: Layout of an auxiliary timing device based on Hamamatsu R3809
MCP-PMT’s viewing Čerenkov light from 1 × 1 cm2 quartz bars.

times of the earliest Čerenkov photoelectron is 11 ps from a 165-MeV/c muon incident on a
1 × 1 cm2 bar at 45◦ and 25 cm from the PMT.

As a simple model of the effect of the PMT on the timing, we smear the arrival time of each
photon by the transit-time jitter of the PMT, 12 ps for the R3809U MCP-PMT’s and 160 ps
for the fine-mesh PMT’s. Then, the rms spread in arrivel times of the earliest photoelectron
in the example above is 15 ps. This is slightly less than the result of combining 11 and 12 ps
in quadrature, which indicates that occasionally the second created photoelectron fluctuates
to become the first detected one.

This result also indicates that a timing algorithm based on the first detected photoelectron
would not yield resolution better than 15 ps for the device sketched in Fig. 25. Can we do
better by using information from more than one photoelectron?

Kichimi et al. [42] reported time resolution of 30 ps for distances up to 30 cm from a
Hamamatsu H2431 fine-mesh PMT (4.6-cm active diameter) coupled to a 2 × 4 cm2 quartz
bar, when a 1-GeV pion entered the bar at 40◦ angle of incidence. The transit-time jitter
for these PMT’s is stated as 160 ps by Hamamatsu. We can reproduce this behavior in
our simulation supposing the transit-time jitter is actaully 120(?) ps , and that the timing
algorithm is based on the arrival time of the 10th photoelectron.

This desirable behavior can occur because typically 10 (?) photoelectrons arrive within
the transit-time jitter of the fine-mesh PMT’s. However, the transit-time jitter of the MCP-
PMT’s is so short that typically only a single photoelectron arrives during this interval, and
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the arrival times of the photoelectrons are essentially decoupled. Thus, the best time resolu-
tion obtainable with the MCP-PMT’s is based on the time of the first detected photoelectron,
and is σ = 15 ps.

Hence, the MCP-PMT detector would not provide the 6-ps time resolution needed to
located the muons with respect to the cooling rf cycle (recall sec. 2.4). However, such a
device would be excellent as an auxiliary timing device.

5.3 e-μ-π Identification by Time of Flight

Either the fine-mesh PMT’s or the MCP-PMT’s can provide timing accurate enough to
resolve the ambiguity in the RF timing cavity. They can also provide a good measure of the
muon’s time of flight over the 3-meter path between the auxiliary timing detector and the
RF timing cavity. This should permit identification of electrons, muons and pions.

Indeed, the time-of-flight difference per meter between particles of masses m1 and m2 at
momentum P is

Δt =
1

β1c
− 1

β2c
=

√
1 + (m1c/P )2 −√1 + (m2c/P )2

c
. (96)

At 165-MeV/c momentum electrons arrive earlier than muons by 0.625 ns/m and pions arrive
later by 0.407 ns/m.

A potential problem with the proposed scheme is the ambiguity in the timing measure-
ment of the RF timing cavity, whose period is 1.25 ns. We will select particles whose time
is within ±120 ps of the start of an RF cycle. But the RF measurement alone is ambiguous
as to which half cycle the particle is in, i.e., ambiguous to multiples of 0.625 ns. Thus the
time-of-flight technique will work best if both the e-μ and the μ-π time differences of odd
multiples of 312.5 ps.

This criterion cannot be met exactly. The best choice of flight path in the range 3-4 m
is 3.63 m, for which both the e-μ and the μ-π time differences differ from multiples of 0.625
ns by 230 ps. If the timing resolution of the auxiliary timing device is 100 ps we would have
only 2.3-σ separation between μ’s and e’s or π’s.

e-μ separation would be maximized at (effectively) 312 ps for a flight path of 3.5 m, at
which the μ-π separation is only (effectively) 177 ps. μ-π separation would be maximized at
(effectively) 312 ps for a flight path of 3.82 m, at which the e-μ separation is only (effectively)
105 ps.

Clearly the particle identification would benefit from an auxiliary timing device with
resolution of 30 ps rather than 100 ps. This accuracy could be achieved with either fine-
mesh PMT’s or MCP-PMT’s in a configuration such as that of Fig. 25.
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