Prospects for a Muon Collider

Kirk T. McDonald Princeton U. mcdonald@puphep.princeton.edu July 17, 1998 BNL AGS/RHIC User's Meeting

Muon Collider main page:

http://www.cap.bnl.gov/mumu/mu_home_page.html

Muon Collider R&D Status Report:

http://www.cap.bnl.gov/mumu/status_report.html

Princeton muon collider page: http://puhep1.princeton.edu/mumu/

Future Frontier Facilities

(Will the U.S. have one?)

Hadron collider (LHC, SSC): ≈ \$100k/m [magnets].
 ≈ 2 km per TeV of CM energy.
 Ex: LHC has 14-TeV CM energy, 27 km ring, ≈ \$3B.

Linear e⁺e⁻ collider (SLAC, NLC(?)): ≈ \$200k/m [rf].
≈ 20 km per TeV of CM energy;
But a lepton collider needs only ≈ 1/10 the CM energy to have equivalent physics reach to a hadron collider.

Ex: NLC, 1.5-TeV CM energy, 30 km long, \approx \$6B (?).

• Muon collider: \approx \$1B for source/cooler + \$100k/m for rings Well-defined leptonic initial state.

 $m_{\mu}/m_e \approx 200 \Rightarrow$ Little beam radiation.

 \Rightarrow Can use storage rings.

 \Rightarrow Smaller footprint.

Technology: closer to hadron colliders. ≈ 6 km of ring per TeV of CM energy. Ex: 3-TeV muon collider \approx \$3B (?).

Ingredients of a Muon Collider

An accelerator complex in which

- Muons (both μ^+ and μ^-) are collected from pion decay following a pN interaction.
- Muon phase volume is reduced by 10^6 by ionization cooling.
- The cooled muons are accelerated and then stored in a ring.
- $\mu^+\mu^-$ collisions are observed over the useful muon life of ≈ 1000 turns at any energy.
- Intense neutrino beams and spallation neutron beams are available as byproducts.

Muons decay: $\mu \to e\nu \implies$

- Must cool muons quickly (stochastic cooling won't do).
- Detector backgrounds at LHC level.
- Potential personnel hazard from ν interactions.

A First Muon Collider to study light-Higgs production:

The Case for a Muon Collider

- More affordable than an e^+e^- collider at the TeV (LHC) scale.
- More affordable than either a hadron or an e^+e^- collider for (effective) energies beyond the LHC.
- Precision initial state superior even to e^+e^- .

• Initial machine could produce light Higgs via s-channel:

Higgs coupling to μ is $(m_{\mu}/m_e)^2 \approx 40,000 \times$ that to e.

Beam energy resolution at a muon collider $< 10^{-5}$,

 \Rightarrow Measure Higgs width.

Add rings to 3 TeV later.

• Neutrino beams from μ decay about 10⁴ hotter than present.

HEPAP Subpanel Report on PLANNING FOR THE FUTURE OF U.S. HIGH-ENERGY PHYSICS

February 1998

Recommendation on R&D for a Muon Collider

The Subpanel recommends that an expanded program of R&D be carried out on a muon collider, involving both simulation and experiments. This R&D program should have central project management, involve both laboratory and university groups, and have the aim of resolving the question of whether this machine is feasible to build and operate for exploring the high-energy frontier. The scale and progress of this R&D program should be subject to additional review in about two years.

CERN-EP/98-03 CERN-SL 98-004 (AP) CERN-TH/98-33

Options for Future Colliders at CERN

J. Ellis, E. Keil, G. Rolandi

January 23, 1998

6 RECOMMENDATIONS

- 3. CERN should launch technical studies of $\mu^+\mu^-$ colliders, notably in the areas of the source and beam cooling, and should explore the possibility of locating such machines on or in the neighbourhood of the CERN site.
- 6. These studies should be carried out in collaborations with other laboratories, since most technical problems do not depend on the site. CERN's goal in these collaborations should be to contribute to the global pool of technologies for future collider options. It should confirm its reputation as a valuable and reliable partner in the international collaborations that will form to develop proposals for future collider projects.

The Muon Collider Collaboration

Charles M. Ankenbrandt¹, Giorgio Apollinari², Muzaffer Atac¹, Bruno Autin³, Valeri I. Balbekov¹, Vernon D. Barger⁴, Odette Benary⁵, Scott Berg⁶, Michael S. Berger⁶, S. Alex Bogacz⁷, T. Bolton⁸, Shlomo Caspi⁹, Christine Celata⁹, Yong-Chul Chae¹⁰, David B. Cline¹¹, John Corlett⁹, Lucien Cremaldi¹², H. Thomas Diehl¹, Alexandr Drozhdin¹, Richard C. Fernow¹³, David A. Finley¹, Yasuo Fukui¹⁴, Miguel A. Furman⁹, Tony Gabriel¹⁵, Juan C. Gallardo¹³ Alper A. Garren¹¹, Stephen H. Geer¹, Ilya F. Ginzburg¹⁶, Michael A. Green⁹, John F. Gunion¹⁷, Ramesh Gupta⁹, Tao Han¹⁷, Katherine C. Harkay¹⁰, Colin Johnson³, Carol Johnstone¹, Stephen A. Kahn¹³,
Bruce J. King¹³, Harold G. Kirk¹³, Masayukiu Kumada¹⁸, Yoshitaka Kuno¹⁴, Paul LeBrun¹, Kevin Lee¹¹, Derun Li⁹, David Lissauer¹³, Laurence S. Littenberg¹³, Changguo Lu¹⁹, Alfred D Luccio¹³, Kirk T. McDonald¹⁹, Alfred D. McInturff⁹, Frederick E. Mills¹, Nikolai V. Mokhov¹, Alfred Moretti¹, David V. Neuffer¹, King-Yuen Ng¹, Robert J. Noble¹, James H. Norem^{10,1}, Blaine E. Norum²⁰, Hiromi Okamoto²¹, Yasar Onel²², Robert B. Palmer¹³, Zohreh Parsa¹³, Jack M. Peterson⁹, Yuriy Pischalnikov¹¹, Milorad Popovic¹, Eric J. Prebys¹⁹, Zubao Qian¹, Rajendran Raja¹, Pavel Rehak¹³, Thomas Roser¹³, Robert Rossmanith²³, Jack Sandweiss²⁴, Ronald M. Scanlan⁹, Lindsay Schachinger⁹, Andrew M. Sessler⁹, Quan-Sheng Shu⁷, Gregory I. Silvestrov²⁵, Alexandr N. Skrinsky²⁵, Panagiotis Spentzouris¹, Ray Stefanski¹, Sergei Striganov¹, Iuliu Stumer¹³, Don Summers¹², Dejan Trbojevic¹³, William C. Turner⁹, Andy Van Ginneken¹, Tatiana A. Vsevolozhskaya²⁵, Masayoshi Waka¹⁴, Weishi Wan¹, Haipeng Wang¹³, Robert Weggel¹³, Erich H. Willen¹³, David R. Winn²⁷, Jonathan S. Wurtele²⁸, Yongxiang Zhao¹³, Max Zolotorev⁹

¹Fermi National Laboratory, P. O. Box 500, Batavia, IL 60510

²Rockefeller University, New York, NY 10021

³CERN, 1211 Geneva 23, Switzerland

⁴Department of Physics, University of Wisconsin, Madison, WI 53706

⁵Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

⁶Physics Department, Indiana University, Bloomington, IN 47405

⁷Jefferson Laboratory, 12000 Jefferson Ave., Newport News, VA 23606

⁸Kansas State University, Manhattan, KS 66502-2601

⁹Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720

¹⁰Argonne National Laboratory, Argonne, IL 60439

¹¹University of California Los Angeles, Los Angeles, CA 90095

¹²University of Mississippi, Oxford, MS 38677

¹³Brookhaven National Laboratory, Upton, NY 11973

¹⁴KEK High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305, Japan

¹⁵Oak Ridge National Laboratory, Oak Ridge, TN 37831

¹⁶Institute of Mathematics, Prosp. ac. Koptyug 4, 630090 Novosibirsk, Russia

¹⁷Physics Department, University of California, Davis, CA 95616

¹⁸National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba, Japan

¹⁹Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

²⁰University of Virginia, 205 McCormick Road, Charlottesville, VA 22901

²¹N.S.R.F, Institute for Chemical Research, Kyoto University, Gokanoshou, Uji, Kyoto 611, Japan

²²Physics Department, Van Allen Hall, University of Iowa, Iowa City, IA 52242

²³DESY, Hamburg, Germany

²⁴Physics Department, Yale University, CT 06520

²⁵ Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

²⁶Department of Physics and Astronomy, SUNY, Stony Brook, NY 11790

²⁷Fairfield University, Fairfield, CT 06430

²⁸University of California Berkeley, Berkeley, CA 94720

Spokesperson: R.B. Palmer

Meetings and Workshops

Subject	Organizer	Place	Date	Additional Information
Targetry	H. Kirk and K. McDonald	BNL	Aug. 3, 1998	Contact K. McDonald (mcdonald@puphep.princeton.eduH.)/ Kirk (hkirk@bnl.gov)
Acceleration	S. Berg and D. Neuffer	Bloomington, IN	Aug. 10-11, 1998	Contact S. Berg (jsberg@indiana.edu)
Neutrino Physics	B. King	BNL	Aug. 13-14 1998	Contact B. King (bking@bnl.gov)
Cooling Theory & Expt	R. Fernow and S. Geer	BNL	Aug. 31- Sep. 2, 1998	Contact R. Fernow (fernow@bnl.gov) or S. Geer (sgeer@fnal.gov)
Collaboration Meeting	A. Sessler	LBNL	Oct. 8-13, 1998	Contact A. Sessler (amsessler@lbl.gov)
Cooling Theory & Expt	R. Fernow and S. Geer	FNAL	Dec. 7 - 9, 1998	Contact R. Fernow (fernow@bnl.gov) or S. Geer (sgeer@fnal.gov)
Collaboration Meeting	B. Palmer	BNL	Tentative May 19-26, 1999	Contact J. Gallardo (gallardo@bnl.gov)

• PROSPECTIVE STUDY OF MUON COLLIDERS

Introductory meeting Monday, July 20 1998 at 14 hrs CERN PS Auditorium, Bdg 6-2-024

Technical Challenges

- 16-GeV proton driver, 15 Hz, 4-MW beam power,
 1-ns bunch length (C. Ankenbrandt, T. Roser...).
- Targetry and Capture
- Muon Cooling
- Acceleration more work needed (S. Berg...)
- Storage rings have beautiful, highly corrected solutions due to heroic work of Al Garren, Carol Johnstone and Dan Trbojevič.
- Interaction region and detector design more work needed (I. Stumer...)

A muon's view of the interaction region:

Overview of Targetry for a Muon Collider

- $1.2 \times 10^{14} \ \mu^{\pm}$ /s via π -decay from a 4-MW proton beam.
- Cooling jacket around stationary target would absorb too many pions.
- Liquid-metal jet target: Ga, Hg, or solder (Bi/In/Pb/Sn).
- 20-T capture solenoid followed by a 1.25-T π -decay channel with phase-rotation via rf (to compress energy of the muon bunch).

Targetry Issues

- 1-ns beam pulse \Rightarrow shock heating of target.
 - Resulting pressure wave may disperse liquid (or crack solid).
 - Damage to target chamber walls?
 - Magnetic field will damp effects of pressure wave.
- Eddy currents arise as metal jet enters the capture magnet.
 - Jet is retarded and distorted, possibly dispersed.
 - Hg jet studied at CERN, but not in beam or magnetic field:

High-speed photographs of mercury jet target for CERN-PS-AA. (laboratory test) 4,000 frames per second, Jet speed: 20 ms⁻¹, diameter: 3 mm, Reynold's Number: >100,000

- Targetry area also contains beam dump.
 - Need 4 MW of cooling.
 - Harsh radiation environment for magnets and rf.

An R&D Program for Targetry

at a Muon Collider

A PROPOSAL TO THE BNL AGS DIVISION

David Brashears,^h Kevin Brown,^b Michael Cates,^h John Corlett,^f Adrian Fabich,^d Richard C. Fernow,^b Charles Finfrock,^b Yasuo Fukui,^c Tony A. Gabriel,^f Juan C. Gallardo,^b Michael A. Green,^f George A. Greene,^b John R. Haines,^h Jerry Hastings,^b Ahmed Hassanein,^a Colin Johnson,^d Stephen A. Kahn,^b Bruce J. King,^b Harold G. Kirk,^{b,1} Jacques Lettry,^d Vincent LoDestro,^b Changguo Lu,ⁱ Kirk T. McDonald,^{i,2} Nikolai V. Mokhov,^e Alfred Moretti,^e James H. Norem,^a Robert B. Palmer,^b Ralf Prigl,^b Helge Ravn,^d Bernard Riemer,^h James Rose,^b Thomas Roser,^b Joseph Scaduto,^b Peter Sievers,^d Nicholas Simos,^b Philip Spampinato,^h Iuliu Stumer,^b Peter Thieberger,^b James Tsai,^h Thomas Tsang,^b

^aArgonne National Laboratory, Argonne, IL 60439
^bBrookhaven National Laboratory, Upton, NY 11973
^cUniversity of California, Los Angeles, CA 90095
^dCERN, 1211 Geneva, Switzerland
^eFermi National Laboratory, Batavia, IL 60510
^fLawrence Berkeley National Laboratory, Berkeley, CA 94720
^gMichigan State University, East Lansing, MI 48824
^hOak Ridge National Laboratory, Oak Ridge, TN 37831
ⁱPrinceton University, Princeton, NJ 08544

To be submitted Sept. 1,1998.

¹Project Manager. Email: kirk@electron.cap.bnl.gov

²Spokesperson. Email: mcdonald@puphep.princeton.edu

Studies to be performed in the AGS F.E.B. U-line.

Ionization Cooling

- Ionization: takes momentum away.
- RF acceleration: puts momentum back along z axis.
- \Rightarrow Transverse cooling.

Particles are accelerated longitudinally

• Use channel of LH₂ absorbers, rf cavities and alternating solenoids (to avoid buildup of angular momentum).

- But the **energy spread rises**.
- \Rightarrow Must exchange longitudinal and transverse emittance frequently to avoid beam loss due to bunch spreading.
- Can reduce energy spread by a wedge absorber at a momentum dispersion point:

• Emittance exchange via wedges + bent solenoids:

PROPOSAL

Ionization Cooling Research and Development Program for a High Luminosity Muon Collider

Charles M. Ankenbrandt^a, Muzaffer Atac^a, Giorgio Apollinari^b, Valeri I. Balbekov^a, Morris Binkley^a, S. Alex Bogacz^c, Christine Celata^d, David B. Cline^e, John Corlett^d, Lucien M. Cremaldi^f, Richard C. Fernow^g, David Finley^{*a*}, Yasuo Fukui^{*h*}, Juan C. Gallardo^{*g*}, Stephen H. Geer^{*a*, \dagger}, Gail G. Hanson^o, Ahmed Hassaneinⁱ, Carol Johnstone^a, Stephen A. Kahn^g, Bruce J. King^g, Harold G. Kirk^g, Thomas R. Kobilarcik^a, Yoshitaka Kuno^h, Paul LeBrun^a, Kevin Lee^e, Derun Li^d, Changguo Lu^j, Kirk T. McDonald^j, Alfred D. McInturff^d, Frederick E. Mills^a, Nikolai V. Mokhov^a, Alfred Moretti^a, Yoshiharu Mori^h, David V. Neuffer^a, Robert J. Noble^a, James H. Norem^{a,i}, Stephen C. O'Day^a, Yasar Onel^k, Robert B. Palmer^g, Zohreh Parsa^g, Yuriy Pischalnikov^e, Milorad Popovic^a, Eric J. Prebys^j, Zubao Qian^a, Rajendran Raja^a, Claude Reedⁱ, Pavel Rehak^g, Andrew M. Sessler^d, Gregory I. Silvestrov^l, Alexandr N. Skrinsky^l, Dale Smithⁱ, Panagiotis G. Spentzouris^a, Ray Stefanski^a, Sergei Striganov^a, Donald J. Summers^f, Lee C. Tengⁱ, Alvin V. Tollestrup^a, William C. Turner^d, Andreas Van Ginneken^a, Tatiana A. Vsevolozhskaya^l, David R. Winn^m, Jonathan S. Wurteleⁿ, Takeichiro Yokoi^h, Yongxiang Zhao^g, Max Zolotorev^d

The MUCOOL Collaboration

 † Spokesperson

Cooling Demonstration Experiment

Test basic cooling components:

- \bullet Alternating solenoid lattice, RF cavities, $\rm LH_2$ absorber
- Lithium lens (for final cooling).
- Dispersion + wedge absorbers to exchange longitudinal and transverse phase space.

Track individual muons; simulate a bunch in software.

Possible site: Meson Lab at Fermilab:

Summary

- A muon collider offers the prospect of a more cost-effective technology for high-energy accelerators.
- Cooling the beams is the key.
- The concepts of a muon collider are still in a formative stage.
- \Rightarrow Join us in exploring the physics opportunities and solving the technical challenges of a muon collider!

