‡Fermilab

NuStorm target and facility D Adey

2nd PASI meeting, Rutherford Appleton Laboratory 4th April 2013

Contents

- Concept
- Motivations/Benefits
- Accelerator complex
- Implementation
- Material taken from NuStorm workshops at Fermilab (Sept 12), Imperial college (Nov 12) and CERN (Mar 13)

NeUtrinos from STORed Muons

- 60-120 GeV POT
- Pion capture
- Transport line and injection
- $\pi \rightarrow \mu$ decays in ring
- μ storage for ~ 70 turns

- 10^{21} POT in 5 years of running @ 60 GeV in Fermilab PIP era
- 0.1 π/POT
- $E_{collection} = 0.8$
- $E_{ini} = 0.8$
- $\mu/\pi = 0.08$ (yct X μ capture in $\pi \rightarrow \mu$ decay) [π decay in straight]
- $A_{dynamic} = 0.75 (FODO)$
- $\Omega =$ Straight/circumference ratio (0.43) (FODO)

1.7 X 10¹⁸ useful μ decays Precise flux with known flavour content

v physics motivations

- Cross sections in few GeV range not as well known as low or high energies
- One of the largest systematic errors for oscillation experiments
- No realistic standard candle
- Old data is proving difficult to interpret

Target (Striganoff)

- 100KW (prepare for 400KW) 60GeV from main injector
- Graphite target within NuMI-like horn
- Li lens would be beyond state of art
- MARS studies suggest 0.1 pions / POT
- Significant irradiation of first quadrupoles in transport line

Magnet	Length	Distance to horn	Strength	Beam pipe radius	Estimated pole-tip field
Name	(mm)	(From End of Magnet, mm)	(T/m)	(mm)	(T)
Q1	500	700	6.09	200	1.22
Q2	900	1800	-10.18	200	2.04
Q3	900	2900	15.37	200	3.07
Q4	500	3716	-14.77	200	2.95
Q6	500	7600	-12.06	200	2.41
B1	2400	6884	-	width=400	1.213
QI1	900	8700	10.27	200	2.05
B2	800	9715	-	width=400	2.00
QI4	900	12041	-9.70	200	-1.94
Q15	900	13141	9.67	200	1.93
Q7A	500	16074	-10	200	2
B1	2400	18724	-	width=400	1.213
Q9	250	19224	10	200	2

material	momentum (GeV/c)	$\pm 15\%$	$\pm 10\%$	$\pm 5\%$	target length (cm)	density (g/cm^3)
Carbon	3	0.085	0.056	0.028	27.3	3.52
Carbon	5	0.099	0.067	0.033	32.2	3.52
Inconel	3	0.131	0.087	0.044	19.2	8.43
Inconel	5	0.136	0.091	0.045	27.0	8.43
Tantalum	3	0.164	0.109	0.054	15.3	16.6
Tantalum	5	0.161	0.107	0.053	21.3	16.6
Gold	3	0.177	0.118	0.059	18.0	19.32
Gold	5	0.171	0.112	0.056	21.0	19.32

1 1 1

Radiation hard magnets (Cozzolino - BNL)

• High temperature and radiation tolerant quadrupoles under investigation at Brookhaven

Capture and injection (Liu)

- Stochastic injection of pions into decay ring
- Dual optics for 5GeV pions and 3.8GeV muons
- High energy muons can be passed through a degrader to provide a low energy muon beam for further use

Injection Arc

150m non-parallel

straights

•
$$\beta \gamma \approx 37 \rightarrow A_N = A \beta \gamma =$$

74 mm rad

- Momentum: $\sigma \Delta p/p = 0.08$
- 35% dynamic lost after 70 turns (no decays)

FFAG decay ring (Pasternak)

Simulation studies for FFAG decay ring, suggest:

- 1mmrad non-normalised acceptance
- 26% momentum spread achievable
- 0.7% losses after 60 turns

Experimental tests of straight FFAG at KURRI

Small scallop will have a negligible effect on the neutrino flux

Implementation at Fermilab (Geelhoed)

- Use MI abort line
- Far detector hall in D0 assembly building
- Beamline layout, costing, component search, safety planning
- Integration with MI cycle

Summary

- Work on sterile search and cross section physics potential
- Proton source, target, capture, injection and decay ring work
- Implementation at sites at Fermilab and CERN
- LOI submitted to Fermilab, EOI in preparation for CERN

Questions?