

Thermal, Mechanical and Fluid Flow Challenges of the FRIB Primary Beam Dump

Mikhail Avilov Facility for Rare Isotope Beams Michigan State University

Outline

- FRIB primary Beam Dump Concept and Technical Requirements
- Overview of Challenges for the Beam Dump
- Mechanical Challenges
- Thermal and Thermo-mechanical Challenges
- Fluid Challenges
- Chemical Challenges
- Radiation Challenges
- Summary

Facility for Rare Isotope Beams

- World-leading heavy ion accelerator facility for rare isotope science
 - Nuclear Structure
 - Nuclear Astrophysics
 - Fundamental Interactions
 - Isotopes for Societal Needs

Scope and Technical Requirements

Rare isotope production targets and beam dump compatible with beam power of 400 kW at 200 MeV/u for ²³⁸U (>200 MeV/u for lighter ions)

U.S. Department of Energy Office of Science Michigan State University

Slide 4

PF1 Pellemoine, Frederique, 5/5/2014

Primary Beam Dump Water-filled Rotating Drum Concept

Beam Dump requirements

- High power capability up to 325 kW
- 1 year (5500 h) lifetime desirable
- Remote replacement and maintenance
- Water-filled rotating drum concept chosen for FRIB baseline
 - Using water to stop the primary beam and absorb beam power

Design parameters

FRIE

- Ti-alloy shell thickness
 0.5 mm to minimize power deposition in shell
- 400 rpm and 70 cm diameter to limit maximum temperature and amplitude of temperature changes
- 60 gpm water flow to provide cooling and gas bubble removal

Beam Dump Challenges Overview

Challenge	Challenge
Mechanical	<u>Chemical</u>
vibration	corrosion
mechanical resonances	radiolysis
pressure-induced stress	Radiation
Thermal and thermo-mechanical	radiation damage of materials
thermal stress	sputtering
fatigue	radiation creep
stress wave	
thermal creep	Some effects may be enhanced by the presence of the other
<u>Fluid</u>	 Up to now no facility exists to study the combination of all these effects > perform studies that combine some challenges using existing facilities
bubble formation: nucleate boiling	
bubble formation: cavitation	
wall heat transfer	
FRIR Facility for Rare Isotope Beams	

Michigan State University

Mechanical Challenges Vibration, Mechanical Resonances, Internal Pressure

- Stress induced by internal pressure
 - Studied numerically
 - The optimization of the BD shell geometry performed in order to better withstand the increased pressure level due to BD rotation
 - Safety factor of 5 calculated
 - Verified by the mockup tests

Safety factor > 90

- Mechanical resonances
 - Studied numerically, the operation rotating frequency range found to be far below the first resonance peak.
 - Safety factor of > 90 calculated
 - Mechanical test of mockup did not reveal major issues

Mechanical Challenges Mockup Tests to Confirm Mechanical Design

- Beam dump mock-up tests at ORNL performed to evaluate mechanical and flow design
 - Parametric study over flow parameter range » Rotation speed, flow rates, pressures, angle » Evaluation of pressure drops
- Additional prototypic operation verified
 - Mechanical balance
 - Fill and drain tests
 - Reliability

Thermal and Thermo-mechanical Challenges Thermal Stress in the BD Shell

- High power beam induces high level of thermal stress in the BD shell
 - Thermal and mechanical conditions are numerically simulated for different primary beams and different rigidities
- In the most severe case with U beam:
 - Temperature: 350 ± 150 °C (limited by 500 °C to prevent corrosion)
 - Thermal stress: 250 ± 150 MPa
- Far below the stress limit for Ti-6AI-4V alloy
 - 800 900 MPa

Calculated stress profile in the Beam Dump shell

Calculated temperature profile in the Beam Dump shell

Thermal and Thermo-mechanical Challenges Fatigue and Stress Wave

Fatigue

- BD rotation -> cyclic thermal load from the beam -> possible fatigue issues
- BD must survive 1.e8 cycles
- Adding 1% of B to Ti-6AI-4V alloy could improve significantly fatigue properties of the shell, increasing the safety factor for all primary beams and rigidities
- Validation tests required as simulation gives large dispersion in results with respect to the input parameters
- Corrosion and radiation damage may affect significantly the fatigue life

Stress wave

Dr Emiliait December 44N5VS

- Is a result of the beam impact to the rotating surface. Contributes to the total stress in the BD shell
- Simulation performed revealed stress wave contribution ~ 10% of the total stress

Fluid Challenges Bubble Formation: Boiling and Cavitation

- Boiling bubble formation due to high power deposition in water and in the shell
- Cavitation bubble formation due to rapid change of pressure
- Bubble formation -> bubble collapse -> shockwave -> possible BD shell damage
 - Study of bubble formation on the shell is in progress
 - Cavitation study simulation and test
 » Simulation showed no critical pressure changes
 - » BD mockup flow test did not reveal cavitation

Flow test with transparent (acrylic) beam dump

Pressure drop simulation

Fluid Challenges Wall Heat Transfer [1]

 Good heat transfer is essential for heat removal from the shell => highly turbulent water flow required. CFD simulation – wall heat transfer improved by introducing the turbine and insert

U.S. Department of Energy Office of Science Michigan State University

Fluid Challenges Wall Heat Transfer [2]

Study:

- Collaboration with Fluid Mechanic Institute of Toulouse established (expertise in transitory boiling problem in nuclear power plant)
- Simulation of the BD fluid and thermal conditions with NEPTUNE code
- <u>Q:</u> How can fast rotation help in bubble removal from the BD shell thus improving the heat transfer?
- Tests:

FRI

- Tests intended to evaluate the heat flux transfer through the shell
- Electron beam will be used to heat the mockup
- Other issues (like fatigue or bubble formation) are possible to study

Budker Institute

of Nuclear Physics

Chemical challenges Corrosion, radiolysis

Corrosion

- Ti-6AI-4V temperature must be limited by 500
 °C to avoid strong corrosion in water
- Reduced power densities for few ion beams at few rigidities could be used
- Nanoscale corrosion studies during SHI irradiation at Sandia Lab

Radiolysis

- Liberates hydrogen and oxygen gas and produces hydrogen peroxide that may impact the BD shell
- Gas production estimates did not reveal substantial quantities of H, O and HO2
- Water circulation helps to prevent the gas accumulation
- Adding H2 (3 ppm) mitigates radiolysis

Radiation challenges Radiation damage of Ti alloy and Sputtering

- Irradiation test with Ti-6AI-4V and Ti-6AI-4V-1B alloys
 - Irradiation tests were performed at IRRSUD (GANIL, Caen, France)
 - No evidence of Phase transformation and ion track was shown at 3 irradiations (⁸²Kr at 25 and 45 MeV and ¹³¹Xe at 92 MeV)
 - More tests ongoing at IRRSUD
 - Samples of Ti-6AI-4V-1B were irradiated at NSCL with ⁴⁰Ca beam at 50 MeV/u

Sputtering

- A process of surface erosion due to bombardment by the ions
- Sputtering is stronger in insulators (TiO2)
- Sputtering evaluation for Ti and TiO2 (M. Toulemonde, GANIL): U beam at 160 MeV/u
- Thickness of sputtered layers were estimated to be 0.2 nm/year for Ti, 1 micron/year for TiO2 – should not be an issue

Talk of F. Pellemoine, this workshop

CiMap

Energy loss vs. specific energy for nuclear (blue) and electronic (red) sputtering

Conclusions

- Water-filled rotating drum concept of the beam dump is chosen for the FRIB baseline
- No show-stoppers but challenges exists and being addressed
- Some effects may be enhanced by the presence of the other (e.g. corrosion in presence of radiation, stress limit in the presence of radiation)
 - Up to now no facility exists to study an impact from all the effects combined
 - All challenges were studied case-by-case experimentally and in simulation
- Solutions found for most issues that could negatively impact on the BD operation
- Some studies (in particular, BD fluid flow/boiling/shell heat transfer) ongoing

Acknowledgements

FRIB-MSU:

Frederique Pellemoine Wolfgang Mittig Mike Schein Tiffany Fourmeau Reginald Ronningen

ORNL:

Adam Aaron Adam Carroll Van Graves Tom Burgess

MSU Department of Chemical Engineering and Material Science:

Carl Boehlert Aida Amroussia

Institute of Fluid Mechanics (Toulouse, France): Catherine Colin

Wladimir Bergez

GANIL: Marcel Toulemonde

Thanks for your attention!

Thermal creep evaluation Creep strain at failure: 0.32 Corresponds to >1000 h of operation.

Creep strain after 2 weeks = 0.1 Creep strain after 5500 hours = 1.6 Using Ti-6AI-4V-1B alloy improves creep properties significantly

Barboza, Neto, Silva "Creep mechanism and physical modeling for Ti-6AI-4V" Material Science and Engineering A369 (2004) 201-209

Evolution of the Beam size with the rigidity

60

50

Flow velocity profile verified in flow test with polystyrene beads (ρ = 1.05 g/cm³)

