

FLUKA Power Deposition for IDS120f Geometry

John Back University of Warwick

8th February 2011

Introduction

- Using FLUKA 2008.3c to estimate energy deposition for Hg jet target
- "IDS120f" geometry parameters (N. Souchlas) and \underline{B} field map (R. Weggel)
- MARS+MCNP: less than 1 kW power in each SC coil (N. Souchlas)
- Hg jet: r = 0.4 cm, tilt $\theta = 97$ mr. Modelled as a cylinder.
- Gaussian proton beam $\sigma_x = \sigma_y = 0.12 \,\mathrm{cm}, \,\mathrm{KE} = 8 \,\mathrm{GeV},$

 $\Delta \theta = 27 \,\mathrm{mrad}$ at $z = -37.5 \,\mathrm{cm}$ (from optimisation study by X. Ding)

- Proton rate = $3.125 \times 10^{15} \text{ s}^{-1}$ for 4 MW (8 GeV, 50 Hz)
- Multiply (average) energies by proton rate to get deposited power
- Also looked at energy deposition vs neutron min energy cut-off
- Default neutron energy cut-off of 10^{-14} GeV seems good enough
- Different random number runs (100k events each) to estimate uncertainties

Fluka Geometry (IDS120f)

Shielding (brown area): 60% WC + 40% Water SC coils (yellow areas): 1-9 are Nb₃Sn, 10-19 are NbTi

Typical distribution of beam power

Power deposition in SC coils

Region	P(kW)	Region	P (kW)
SC Coil 1	0.052 ± 0.008	SC Coil 11	0.011 ± 0.002
SC Coil 2	0.032 ± 0.006	SC Coil 12	0.011 ± 0.004
SC Coil 3	0.261 ± 0.058	SC Coil 13	0.007 ± 0.002
SC Coil 4	0.004 ± 0.002	SC Coil 14	0.006 ± 0.002
SC Coil 5	0.066 ± 0.012	SC Coil 15	0.008 ± 0.004
SC Coil 6	0.014 ± 0.004	SC Coil 16	0.007 ± 0.006
SC Coil 7	0.013 ± 0.002	SC Coil 17	0.005 ± 0.004
SC Coil 8	0.017 ± 0.004	SC Coil 18	0.005 ± 0.002
SC Coil 9	0.017 ± 0.006	SC Coil 19	0.010 ± 0.004
SC Coil 10	0.014 ± 0.006	All Coils	0.560 ± 0.062

All SC power deposition results significantly below $1\,\rm kW$

Power deposition in other regions

Region	P(kW)
Inner shielding $r < 17.5 \mathrm{cm}, z < 0 \mathrm{m}$	1050 ± 10
Shielding $0 < z < 6 \mathrm{m}, r < 50 \mathrm{cm}$	1018 ± 10
Downstream shielding $z > 6 \mathrm{m}$	20.0 ± 0.4
SC shield $r > 50 \mathrm{cm}, z < 0 \mathrm{m}$	60.9 ± 0.6
Inner shield casing $1 z < 0 m$	237.6 ± 1.0
Inner shield casing $2 z > 0 m$	245.2 ± 1.2
HgJet	319 ± 2
HgPool	4.4 ± 0.4
Cu Magnet $-131.3 < z < -84.0 \mathrm{cm}$	2.1 ± 0.2
Cu Magnet $-84.0 < z < 2.2 \mathrm{cm}$	188 ± 5
Cu Magnet $2.2 < z < 58.4 \mathrm{cm}$	140 ± 4
Cu Magnet $58.4 < z < 115.4 \mathrm{cm}$	59 ± 3
Cu Magnet $115.4 < z < 158.9 \mathrm{cm}$	16 ± 2
Be window at $6 \mathrm{m}$	2.1 ± 0.2

Earlier Study 2 geometry results had $\sim 60 \,\mathrm{kW}$ in SC coils

SC shield for r > 50 cm stops energy getting to SC3 & other SC coils

¹ Specific power deposition in SC coils 1, 2 & 3

 $P_{\text{peak}} < 0.05 \,\mathrm{mW/g}$ for SC3

Effect of neutron cut-off energy for power in SC3

Summary

- FLUKA results for IDS120f geometry confirms MARS+MCNP results
- Same power deposition for SC3 $(0.3 \,\mathrm{kW})$
- Average power in SC coils all significantly less than 1 kW
- Power in SC coils meets ITER requirement ($< 0.17 \,\mathrm{mW/g}$)
- Default neutron energy cut-off: does not underestimate E_n contributions