

Chicane Optimization

J. Scott Berg
Brookhaven National Laboratory
MAP 2014 Winter Meeting
December 4, 2014

Introduction

- Concept originated by Chris Rogers
- Chicane introduced after target to remove particles except for muons and pions
- High energy protons hit side of chicane
- Low energy protons removed by absorber downstream of chicane

Protons in Chicane

Image: Pavel Snopok

Introduction

- Goal of my procedure: optimize chicane by itself
 - Chicane angle and length
 - Downstream absorber thickness
- Chicane field is 2 T
 - Could be done for other fields
- 25 cm radius aperture downstream of chicane
 - No aperture in chicane
 - 6.58 kW of protons per MW on target at chicane start within 25 cm radius

Chicane Geometry Scan

- Looked at chicane without absorber
- Scan in chicane length, angle
- Defined performance in terms of
 - Muon transmission from 80 to 260 MeV KE
 - Pions also, 80 to 320 MeV
 - Maximum energy of transmitted protons (cutoff)
 - No more than 2 W of protons above this energy per proton MW on target

Choosing Optimal Solutions

- Choose set of solutions with best transmission for a given proton energy cutoff
- Fit angle and length for these solutions to functions of proton kinetic energy cutoff

$$L = L_0 + L_1 K$$
 $\theta = \theta_0 + \theta_1 / K$
 $L_0 \text{ (m)}$ 1.6 $L_1 \text{ (m/GeV)}$ 9.1 $\theta_0 \text{ (mrad)}$ 69 $\theta_1 \text{ (mrad GeV)}$ 28

• No physical meaning to these fits

Transmission vs. Cutoff

Add the Absorber

- Track in G4beamline, downstream from chicane
- Measured criteria 31 m downstream from chicane start
 - Muons from 20 MeV to 390 MeV
 - Proton power
- Varied absorber thickness
- Two absorber positions
 - End of chicane
 - 30 m from chicane start
- Picked four chicane cutoffs

Muon Transmission Post Absorber

Analysis

- Look at muons vs. proton power
- Favor low proton energy cutoff
 - Unless you allow a lot of power downstream
- Poor transmission to get to low proton powers
 - Need to pick tolerable proton power
- Moving absorber downstream helps
 - Effect exaggerated by overweighting high energy?
 - But may not win when NBPR considered
 - Would gain even more by moving further
 - Less benefit for more downstream proton power
- High energy muons overweighted
 - Effective muon loss even higher
 - Low proton energy cutoff even more strongly favored

Muons vs. Proton Power

Summary: Results to Now

- Have a solution for chicane parameters for a given proton kinetic energy cutoff
 - Some behavior not well analyzed and understood
- Significant tradeoff between muon transmission and downstream proton power
 - Need to determine this number
- Low proton energy cutoff in chicane is generally preferred

Improvements to Procedure

- Use the current distribution from the target: 6.75 GeV protons, carbon target
- Use current apertures in solenoids (23 cm)
- Add an aperture to the chicane (right now there are no apertures)
- Weight the muon transmission by a function of energy instead of taking all muons within an interval
- Pick a value for the proton energy transmission permitted downstream. This will require some study to choose a reasonable value.

New Procedure

- 1. Begin with new distribution at 10 m
- 2. Scan chicane alone in angle and length, but no apertures within the chicane proper. Apertures are in place upstream and in a downstream constant solenoid.
- 3. For each chicane geometry, find an aperture profile that keeps all (or mostly all) muons that are accepted by the downstream solenoid
- 4. Re-run the scan in chicane angle and length with these apertures

New Procedure

- 5. Plot muon weighted transmission vs. proton energy cutoff. For several approximate cutoff energies, choose a solution with the best transmission. Fit the chicane angle and length of these solutions to a function of cutoff energy.
- 6. Now add the absorber to the end of the chicane (no additional drift for now). Scan in cutoff energy (using the functional form to find chicane geometry) and absorber thickness.
- 7. Choose a solution with the best transmission for an acceptable downstream proton transmission.

New Procedure

8. Design a NBPR for this chosen solution.

Closing the Loop

- Energy deposition in the chicane
 - Find a shielding solution for the preferred chicane geometry
 - Determine impact on coil apertures
 - Find the chicane field for the real coils
 - Determine if solution is still optimal by repeating for nearby geometries
- New NBPR solution
 - Transmission vs. energy will be different
 - Rerun procedure with modified transmission function

Closing the Loop

- Placement of absorber
 - Place absorber somewhat downstream
 - Re-design NBPR
 - Determine overall performance has improved
 - If performance has improved, absorber placement will need to be added as optimization variable
- Effect of solenoid field on performance