CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

UMF

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

0.5 MW eLINAC Converter/Target Concept Pierre Bricault TRIUMF 2nd Oxford-Princeton High Power Target Workshop Princeton, 6-7 Nov 2008

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Pierre Bricault, TRIUMF

Item	Value	Units
Electron energy	50	MeV
Total power	1/2	MW
Electron current	0,01	Ampère
Target, UC ₂	15	g/cm ²

Pierre Bricault, TRIUMF

RUMF

e-LINAC a tools for future R&D, Initially e-LINAC will be used for photo-fission to produce rare isotope beams. Pierre Bricault, TRIUMF Nov. 6-7, 2008

FRUMF Conceptual Layout

We are proposing to built a new 50 MeV ½ MW electron LINAC.

• This LINAC will be used for photo-fission using GDR in ²³⁸U.

Pierre Bricault, TRIUMF

Fission vs Ee; 100 kW

Pierre Bricault, TRIUMF

Pierre Bricault, TRIUMF

TRUMFBraking Radiation

$$\rho dx - X_0$$

E

 dE_{Rad}

$$\frac{1}{X_0} = \frac{4\alpha N_A Z (Z+1) r_e^2 \log(183Z^{-1/3})}{A}$$

$$\overline{E} \simeq E_0 exp(-\frac{\rho \Delta x}{X_0})$$

- E is the electron energy
- $\alpha \sim 1/137$
- N_A is the Avogadro number, 6,023e23 at/mole
- Z is the material atomic number
- r_e is the classical electron radius ~
 2,818e-13 cm
- A is the molar mass of the material

Element	Z	Α	ρ (g/cm ³)	1/X ₀	$X_0 (g/cm^2)$	τ (cm)
Al	13	27	2,3	0,0178	56,17	24,42
Cu	29	63,5	8,92	0,0340	29,45	3,30
Ta	73	181	16,65	0,0684	14,62	0,88
W	74	184	19,25	0,0691	14,48	0,75
Hg	80	202	13,58	0,0729	13,71	1,01
Pb	82	208	11,34	0,0742	13,47	1,19

Pierre Bricault, TRIUMF

UMPhoton Distribution

Number of photon per electron per MeV produce by a 50 MeV - 20 mAmp electron beam on different converter material

Photon per Electron per MeV

Pierre Bricault, TRIUMF

TRIUMF Residual photon distribution

Pierre Bricault, TRIUMF

3) Photo-fission yield Use GEANT4¹ and FLUKA² to simulate the photo-fission. 50 MeV, 500 kW yield to ~ 1x10¹⁴ photo-fissions/s.

1) <u>Geant4 Developments and Applications</u>, J. Allison et al., IEEE Transactions on Nuclear Science **53** No. 1 (2006) 270-278 <u>Geant4 - A Simulation Toolkit</u>, S. Agostinelli et al., Nuclear Instruments and Methods **A** 506 (2003) 250-303

2) Copyright Italian National Institute for Nuclear Physics (INFN) and European Organization for Nuclear Research (CERN)("the FLUKA copyright holders"), 1989-2007.

Pierre Bricault, TRIUMF

TRUMF Converter options

• Fixed solid target

- + Easiest way to get converter
- + Can used water cooling
- - Can work up to 100 kW.
- Rotating wheel
 - + Can reach 1/2 MW,
 - - Rotating target requires coupling driver outside radiation area,
 - - Coupling cooling and rotating shaft
- Liquid target
 - + Seems easy to implement, good cooling capabilities,
 - - We have to deal with liquid Hg or Pb.
 - - For Hg we do not have easy disposal solution
 - - Hg contamination.

Pierre Bricault, TRIUMF

Fixed solid target

Pierre Bricault, TRIUMF

Liquid Target

Pierre Bricault, TRIUMF