

Fluidised Powder Targets The Flying Couscous Concept

Work by: Ottone Caretta, Peter Loveridge, Tristan Davenne and Chris Denham $@$ Rutherford Appleton Laboratory

Presented by Ottone Caretta

4th High Power Targetry Workshop

Malmo, May 4, 2011

Advantages and issues

• **Solid**

- Shock waves constrained within material no splashing, or cavitation as for liquids
- Material is already broken
- Reduced chemistry problems compared with the liquid

• **Fragmented**

- Small (roundish) grains can withstand higher stresses
- Favourable disposal of the activated material through verification

• **Moving/flowing**

- Replenishable
- Favourable heat transfer (off-line cooling)
- Metamorphic (can be shaped for convenience)

• **Engineering considerations:**

- It is a mature technology with ready solutions for most issues
- Few moving parts and away from the beam!
- **Issues & Questions:**
	- Its dusty
	- Erosion + powder break down. Can be tamed with careful design
	- Beam induced electrostatic charge? Unlikely to be a problem.
	- Eddy currents. Simulations suggest this is ok (T.Davenne)
	- Beam induced thermal expansion of the carrier gas (HiRadMat tests: N.Charitonides, I. Efthymiopoulos)
	- Grain to grain stress propagation: sand bags good for stopping bullets.

Schematic layouts of flowing powder targets for neutrino facilities

NF target

high Z material, open jet configuration (MERIT-type)

e.g. Tungsten powder

Science & Technology Facilities Council Rutherford Appleton Laboratory

Superbeam target

low Z material, contained within pipe

e.g. alumina powder

Applying powder technology to a MERIT-type NF scenario

Tungsten powder: High Z, high density (~10000 kg/m^3 @ 50% w/w)

Tungsten powder

The rig: pneumatic conveying of tungsten

- **Powder**
	- Rig contains 100 kg Tungsten
	- Particle size < 250 microns
- **Parameters**
	- Stainless-steel or glass nozzle
	- Nozzle length: 0.5 1.2 m
	- Driver pressure: $1 4$ bar
- Batch process:
	- 1. Suction / Lift
	- 2. Load Hopper
	- 3. Pressurise Hopper
	- 4. Ejection / observation

- *1. Suction / Lift*
- *2. Load Hopper*
- *3. Pressurise Hopper*
- **4. Powder Ejection and Observation**

Control Interface

Warning messages

Fully automated control system

- Process control
- Data Logging @ 20 Hz
- Hard-wired safety interlocks

Control System Interface (MATLAB)

Ottone Caretta, Malmo, May 2011

Emergency stop

> Suction settings

Ejection settings

 \blacksquare

Post Processing

Automatic report generator

- Records experiment settings
- Graphs the data
- Generates a Microsoft word document for each cycle

Post-processing user interface - Matlab

Experiment 56 Report

Experiment information

Date & Time: 13-Jul-2009 12:31:31 Path: \\Azasd1files\A
Experiment aim: 1-2000/12-21 Eve E41ER Experiment ann.
Test with glass nozzle at a higher pressure than experiment 55. Auto control was terminated due to valve stuck, so the cycle was terminated by hand Experiment observations:
Experiment observations:
The flow looked nice at times and pulsed at other times, although it looks set before the glass section

Suction Cycle

Settings:
Blower frequency: 20 Hz
Suction duration: 300 s Calculated: Calculated:
Average suction pressure: 129 mbar
Average volumetric flow rate: 226 m^3/h
Average air velocity in the suction lance (D=2in): 36.2 m

Ejection Cycle

Blower frequency: 50 Hz Ejection duration: 8 s
Calculated: Fiection pressure: 1.90 has Ejection pressure: 1.50 bar
Average supply flow rate: 191 l/min
Average mass flow rate: 5.82 kg/s
Rough coax air velocity: 27.19 m/s

Settings:

Two-page Report - Microsoft Word

Ottone Caretta, Malmo, May 2011

 \Box

The results: good news!

Tungsten **can** be conveyed in the dense phase, the lean phase and makes interesting dense/coherent jets

Dune flow ~1.5bar

Theoretical powder conveying regimes

Science & Technology Facilities Council Rutherford Appleton Laboratory

Coherent jet characterisation

Coherent Jet workout

- Tungsten powder <250 um
- 2.0 bar ejection hopper pressure
- Jet "droops" by \sim 30 mm over a 300 mm length
- Each particle takes ~0.1 sec to traverse viewport
- Coherent flow with separation between the 2 phases
- Constant pressure in hopper throughout ejection
- Small velocity gradient from top to bottom
- Velocity constant over time
- Cross section of the jet remains constant as the jet flows away from the nozzle
- Geometry of the jet remains reasonably constant with time

Low pressure ejection schematic

(2 bar ejection hopper pressure) *Still from video clip*

Jet Density Calculation

- Recall: Solid Tungsten density = 19,300 kg/m3
- Powder density "at rest" ~ 50% solid

Density Calculation for 2 bar ejection

Jet area, A= 262 mm2 *(from nozzle dimensions and video still measurements)*

Powder bulk velocity, $V = 3.7$ m/s *(from particle tracking)*

Vol flowrate = $A.V = 0.000968$ m³/s

Mass flowrate = 7.875 kg/s *(from loadcell)*

Jet Density = Mass flowrate / Vol flowrate = 8139 kg/m^3 **Jet Density = 42% Solid tungsten density**

Uncertainty is of the order \pm 5% density

Nozzle ID = 21.45 mm Jet height = 14.6 mm Jet Area = 262 mm2

From hopper load-cell data log: 63 kg in 8 sec = 7.875 kg/sec

PIV (Particle Image Velocimetry) "data massage": highlighting the odd grains

Negative image (subtracted the average image) highlights the odd grains

PIV - example

PIV – vertical velocity profile in the jet

Erosion Monitoring

Expect rig lifetime to be limited by wear

Wall thickness monitoring:

- Dense-phase hopper / nozzle
	- No damage
- Lean-phase suction pipework
	- Straight vertical lift to avoid erosion
- Temporary deflector plates
	- Grit polished!

Design to avoid erosion problems is critical

- Lean phase optimisation ($\downarrow u$, $\uparrow \rho$)
- Avoid lean-phase bends \checkmark
- Operate without discharge valve \checkmark
- Replace deflector plate with powder/powder impact

Science & Technology Facilities Council Rutherford Appleton Laboratory

Ultrasonic Thickness Gauge

Selected Material Hardness Values

Variations in the flow rate – typical 2bar ejection

How much material does the beam meets? Density?

Is the amount of material in the nozzle (or jet) constant?

Suction: study on lifting power requirements

Initial mismatch between suction rate (~1kg/s) and ejection rate (~10kg/s)

variables:

- Powder entrainment in the air stream
- Powder size distribution
- Sphericity of the grains
- Diameter of the suction line
- Air to powder ratio
- Density of the powder
- Density of the gas
- Temperature of the gas
- Etc.!

Theoretical lifting work VS Powder lifting flow rate depends on a few **SUCTION** CAPACITY

Matched the ejection rate by reducing nozzle diameter (ejection rate) **18kW blower** and improving the suction pick up arrangement

Powder Size Distribution

- Theory bulk properties vary with particle size
- We expect powder grains to break down over time
- Tried sieve analysis to monitor particle size distribution
- Obtained reliable measurements with laser interferometer

300 µm $212 \mu m$ *150 µm 106 µm* $75 \mu m$ *50 µm*

Sieve shaker: Retsch AS 200 Sample size: 100g Balance: ± 0.5 g

 \Box

Powder breakdown?

Measurements show some powder breakdown. However it is likely that initial powder sampling was not sufficiently "scientific":

you always eat larger corn flakes first and the smaller crumbles at the end..

Different supplies of tungsten show rather different in size distribution

Future experiments – continuous recirculation (contained target)

Future experiments – prevent phase separation

Future experiments – artificial/regular slug formation

Ottone Caretta, Malmo, May 2011

Science & Technology Facilities Council
Rutherford Appleton Laboratory

Future work – CW upgrade

- 10 6 12 13 8 9 2
- (1) powder discharge nozzle
- (2) gas return line forming coaxial flow
- (3) target jet,
- (4) receiver hopper
- (5) suction nozzle for gas lift
- (6) gas lift receiver vessel with filter
- (7) powder heat exchanger
- (8) and (9) pressurised powder hoppers
- (10) Roots blower
- (11) gas heat exchanger
- (12) compressor
- (13) gas reservoir

Powder target work conclusions:

So far lots of fun and plenty still to come!

Questions or suggestions?

