Advanced Numerical Methods for Simulation of Shock-waves Induced by High Energy Particle Beams

<u>A. Dallocchio</u>¹, A. Bertarelli ¹, F. Carra ¹, N. Mariani ^{1, 2} L. Peroni ³, M. Scapin ³

(1) CERN, EN-MME, Geneva, Switzerland(2) Politecnico di Milano, Milan, Italy(3) Politecnico di Torino, Turin, Italy

4TH HIGH POWER TARGETRY WORKSHOP MALMÖ, 4 MAY 2011

Introduction

- Thermally Induced Dynamics
- ✓ Simulation Tools
- Material Modelling & Algorithms of Solution
- Engineering Case Study:
 - Beam Induced Damage on LHC Tungsten Collimator

Outline

Experimental Validation:

CERN HiRadMat Facility

- Rapid interactions of particle beams with solids induce **Dynamic Responses** in matter.
- Three main Dynamic Response Regimes exist, depending on several parameters:
 - Deposited Energy and Energy Density
 - Interaction Duration
 - Material Strength ...

Regime 1: Stress waves and vibrations in the elastic domain

- Low deposited energy density.
- Negligible changes in density.
- Wave at Elastic Speed of Sound (C_o)
- Treated via analytical approach or with standard FEM codes (implicit or explicit)

Example: CNGS target rods

Thermally Induced Dynamics

- Rapid interactions of particle beams with solids induce **Dynamic Responses** in matter.
- Three main Dynamic Response Regimes exist, depending on several parameters:
 - Deposited Energy and Energy Density
 - Interaction Duration
 - Material Strength ...

Regime 2: Stress waves and vibrations in the elastic/plastic domain

- Medium deposited energy density.
- Permanent deformations appear.
- Wave slower than sound speed.
- Can be treated with standard FEM codes (implicit or explicit).

Example: Collimator Metal support After SPS - TT40 robustness test in 2004

A. Dallocchio; PhD Thesis -- CERN-THESIS-2008-140

Thermally Induced Dynamics

Area of residual

plastic strains

- Rapid interactions of particle beams with solids induce **Dynamic Responses** in matter.
- Three main Dynamic Response Regimes exist, depending on several parameters:
 - Deposited Energy and Energy Density
 - Interaction Duration
 - Material Strength ...

Regime 3: Shock Waves

- High deposited energy density.
- Strains and pressure exceed a critical value.
- Wave faster than elastic sound speed. Change of density.
- Require special numerical tools.

Example: Cu Target hit by ²³⁸U beam at GSI

Material Statu

Bulk Fai

Comparison between simulated beam impact in Autodyn and Metallurgical analysis of impacted Cu target (Courtesy **H. Richter / J. Lettry**)

Uniaxial Strain

Strain / Volume Change

Thermally Induced Dynamics

Shock waves in beam-induced accidents ...

- For W shock waves are produced at $\varepsilon_c > 15\%$ and for Cu at $\varepsilon_c > 7.5\%$ (assuming uniaxial strain)
- Strains are intimately related to temperature changes, e.g. for Tungsten:

 $\varepsilon_m \propto \alpha(T_m - T_R)$ with $\overline{\alpha}_{0-3000} \cong 6.8 \times 10^{-6} K^{-1}$ and $T_m = 3340^{\circ} C \Longrightarrow \varepsilon_m \cong 2.3\% < \varepsilon_c$

• Shock waves do not appear (in metal based materials) unless changes of phase occur!!!

... and the tools to treat them

- Standard structural mechanics tools (e.g. Ansys) are unable to treat problems with changes of phase and of density.
- A new class of numerical simulation tools is necessary ⇒ **Hydrocodes**.
- A Hydrocode is a non-linear numerical tool developed to study very fast, very intense loading on materials and structures.
- Originally it assumed a hydrodynamic behaviour of material (no strength \Rightarrow *fluid-like material*).
- Up-to-date Hydrocodes keep material strength into account.

Simulation Tools

To investigate this phenomenon, a fundamental aspect is the development of methodologies of analysis of the complete problem. To do this, it is essential to look to a **multidisciplinary approach**.

Thermally Induced Dynamics

Hydrocodes

Standard FEM Codes

Linear Elastic Behaviour

Complex Equations of State (EOS)

Static Yield Strength

 $\sigma_y = R_{p0.2}$ Replaced by

Multi-parameter Strength Models

$$\sigma_{y} = f(\varepsilon, \dot{\varepsilon}, T, ...)$$

- ✓ Johnson-Cook
- ✓ Steinberg-Guinan
- ✓ Johnson-Holmquist

Static Failure Strength

- $\sigma_{ult} = R_m$ Replaced by
- **Dynamic Failure Models**

$$Damage = f(\varepsilon, \dot{\varepsilon}, T, P_{\max}, P_{\min}, K_{c}...)$$

. . . .

Material Modelling

Tabular EOS (SESAME)

Different analytical Models for different regions of ρ -T space for best fitting:

Polynomial EOS

Tabular EOS Polynomial interpolation:

- defined over the Region of interest
- •P=f(E) with f linear
- 2 different polynomials for Compression (c, μ<0) and Rarefaction (T, μ>0);

$$P_{c} = A_{1}\mu_{c} + A_{2}\mu_{c}^{2} + A_{3}\mu_{c}^{3} + (B_{0} + B_{1}\mu_{c})\rho_{0}e$$

Material Modelling

CERN LHC Collimation Project

There is not a unique Failure Model
 Different Models for Different Failure Mechanisms and Materials

Ductile Failures on high deformable materials (Cu): Ductile Failures on low deformable materials (W Alloys):

Johnson-Cook Failure Plastic Strain Failure Spall Strength (Failure due to Rarefaction Wave)

Ductile-Brittle Failures with

(Shock Wave propagation):

very high strain rates

$$D = \sum \frac{-}{\varepsilon^{f}}$$

$$\varepsilon^{f} = \left[D_{1} + D_{2} e^{D_{3} \sigma^{*}} \left[1 + D_{4} \ln \left| \dot{\varepsilon}^{*} \right| \right] 1 + D_{5} T^{*} \right]$$
Pressure Strain rate Temperature dependence dependence

 $-\Lambda \varepsilon$

$$\begin{cases} \varepsilon_{Pl} \ge \varepsilon_{Pl}^{MAX} \\ D = 1 \end{cases}$$

 $P \le P^{\min}$ D = 1

✓ Identification of Parameters Depends on Failure Conditions
 ✓ Need for Specific tests to Validate Failure Models

Smoothed Particle Hydrodynamics (SPH) Mesh

Lagrangian Mesh: multi-node elements with shared nodes.

SPH Mesh: single-node elements interaction modeled via Weighting Function (W) and Smoothing Length (h); Density (ρ) expressed as a function of W and h.

$\rho^{I} = \sum^{N} m^{J} W^{IJ} (x^{I} - x^{J}, h)$

Possibility to study crack propagation inside the target and motion of expelled fragments/liquid droplets.

SPH Tips and Tricks:

Mesh size:

Accurate damage assessment (splashing) vs. CPU Time

W-Alloy: Inermet 180 Microstructure: W grains embedded with Cu-Ni phase bonder: Typical Dimensions 50-100 μm

Time Step 5-10 times smaller w.r.t. Lagrangian mesh.

Algorithms of Solution

Smoothed Particle Hydrodynamics (SPH) Mesh

SPH Mesh: single-node elements interaction modeled via Weighting Function (W) and Smoothing Length (h); Density (ρ) expressed as a function of W and h.

SPH Tips and Tricks:

Failure Model for Tungsten: Spall Strength Failure due to Rarefaction Shock-Wave

Failure model:

Distance between Interacting SPH Particles must be < 2h (to avoid energetic errors); Plastic Strain Failure Models could leads to energetic instabilities.

Algorithms of Solution

Possibility to study crack propagation inside the target and motion of expelled fragments/liquid droplets.

Smoothed Particle Hydrodynamics (SPH) Mesh

SPH Mesh: single-node elements interaction modeled via Weighting Function (W) and Smoothing Length (h); Density (ρ) expressed as a function of W and h.

Possibility to study crack propagation inside the target and motion of expelled fragments/liquid droplets.

SPH Tips and Tricks:

SPH-Lagrangian Mesh Interaction: Effects of highly energetic droplets 10²-10³ m/s

Algorithms of Solution

CERN

200

0

200

400

Length (mm)

600

800

Effect of Bunch Spacing

Energy Deposition

7.6

3.8

1000

□2

200

200

400

100

400

Length (mm)

600

600

600

800

1000

Radius (mm)

Deposition as initial condition E₀

Radius (mm)

Radius (mm)

0

Hydrocodes: Benchmarking on Cylindrical Cu Target

CERN (Autodyn), Politecnico di Torino (LS-Dyna) and GSI (BIG-2)

M. Scapin, A. Dallocchio, L. Peroni, "Thermo-mechanical modeling of high energy particle beam impact". ACE-X 2010, Paris. Under review for publication on "Numerical Modeling of Materials Under Extreme Conditions", Springer.

Benchmarking of Numerical Codes

LHC Tertiary Collimator (Tungsten Jaws)

Material	Material EOS		Failure model	
Tungsten	Tungsten Tabular (SESAME)		Plastic strain/ Hydro (Pmin)	
Copper OFE	Polynomial	Johnson-Cook	Johnson-Cook	
Stainless steel AISI 316	Shock	Johnson-Cook	Plastic strain	
Water Shock		-	Hydro (Pmin)	

Accidental Cases and Damage Classification

Case	Beam Energy [TeV]	Norm. Emittance [μm rad]	Impacting Bunches	Particles per Bunch	Bunch spacing [ns]	lmpact Depth [mm]	Deposited Energy on Jaw [kJ]	TNT Equivalent [g]
1	3.5	3.50	1	1.3x10 ¹¹	-	2	38.6	9.2
2	5	7	1	1.3x10 ¹¹	-	2	56.2	13.4
3	5	3.5	1	1.3x10 ¹¹	-	2	56.5	13.5
4	5	1.75	1	1.3x10 ¹¹	-	2	56.6	13.5
5	5	1.75	2	1.3x10 ¹¹	25	2	111.3	26.6
6	5	1.75	4	1.3x10 ¹¹	25	2	216.1	51.6
7	5	1.75	8	1.3x10 ¹¹	25	2	429.8	102.7

Three different **damage** scenarios, with increasing severity:

- Level 1 (*Collimator need not be replaced*). Permanent jaw deformation and damage are limited.
- Level 2 (*Collimator must be replaced*). Collimator and other components (e.g. Screws) are fatally compromised.
- Level 3 (Long down time of the LHC). Catastrophic damage to collimator leading to water leakage into beam vacuum (pipe crushing, tank water circuit drilling ...)

Jaw Damaged Area (red) Level 1 : H ≤ 8 mm Level 2: H > 8 mm

✓ Lagrangian Simulations

First W Sector of Jaw (Length 200 mm)

SPH Part

LHC Collimation

CERI

SPH Mesh: W Insert LOCAL Damage due to Beam Impact; Surrounding Lagrangian parts for Boundary Conditions Complete Jaw (Length 500 mm)

Lagrangian Mesh: Shock Wave propagation along the entire structure (W inserts, Cu Jaw, Cooling Pipes, Stiffener)

Shock-Wave Propagation (Lagrangian Mesh)

Single-bunch @ 5 TeV.

Accident Simulations for TCT

- 1) 1 Bunch @ 3.5TeV
- 2) 1 Bunch @ 5TeV

LHC Collimation

CÉRN

- 3) 2 Bunches @ 5 TeV
- 4) 4 Bunches @ 5 TeV
- 5) 8 Bunches @ 5 TeV

Damage Level 1 (In-situ spare surface)

- 1 LHC Bunch @ 5TeV.
- Plastic deformations on cooling pipes and screws remain limited.
- 8mm damage on impacted jaw.
- **Particle Spray** on a larger area on opposite jaw.

- 4 LHC Bunches @ 5TeV impacting at 2mm from jaw surface
- Severe **plastic deformations** on cooling pipes and screws.
- Permanent damage to opposite jaw due to particle spray.

- 8 LHC Bunches at 5 TeV.
- High probability of **water leakage** due to very severe plastic deformations on pipes.
- Impressive jaw damage :
 - Extended eroded and deformed zone.
 - Projections of hot and fast solid tungsten bullets (T≈2000K, V_{max} ≈ 1 km/s) towards opposite jaw. Slower particles hit tank covers (at velocities just below ballistic limit).
 - Risk of "bonding" the two jaws due to the projected resolidified material.

Flies in the ointment

- Most pure material **EOS** are drawn from **military research** (mainly **Los Alamos**). Unfortunately these data are frequently inaccessible as they are **classified**.
- EOS for specific mixtures and alloys are often totally unavailable.
- There is no "fit-any-material" **Strength** or **Failure Model**. There is a generalized lack of experimental data for these models under extreme conditions (e.g intense beam impacts).
- Approximations and extrapolations are inevitable for each of the three "ingredients" of the Hydrocode tools.
 Data for pure metal (more easily available) are often used in place of alloys.
- All presented results are unavoidably affected by these uncertainties.
- Only dedicated experimental tests can provide the correct inputs for simulations.
 - ➔ HiRadMat Facility at CERN

Experimental Validation

CERN HiRadMat Facility

<u>HiRadMat:</u>

High **Rad**iation to **Mat**erials Project: development of a new facility at CERN. Multi-bunch beam impact tests using SPS Beam up to 450 GeV.

Material Test Bench

Several Material candidates ("standard" + advanced).

- •Metals
 - GlidCop, W, Mo
- •Ceramics
 - Graphite, SiC
- Metal-Diamond Composites
 - CuCD, MoCD...

Experimental Validation

Conceptual Design of HiRadMat Sample Holder

Experimental Validation

A. Dallocchio - CERN

- **Beam-induced structural effects** up to the melting point can be reasonably well treated with Standard FEM Codes.
- When changes of phase occur and **shock-wave phenomena** are in place, advanced tools must be used (**Hydrocodes**).
- Main aspects of complex numerical simulations have been discussed:
 - Advanced material modelling.
 - Algorithms of solution.
 - Benchmarking between numerical tools.
 - Energy Deposition.
- State-of-the-art 3D analysis of complex Collimator model carried out including:
 - Simulation of Shock-wave propagation
 - Simulation of permanent damages
 - Particle spray do to change of phase

Conclusions

- W and Cu are well-known materials (Los Alamos): quite good confidence in results reliability...
- ...anyway Constitutive models required by Hydrocodes are well beyond commonly available material data . *Most important limitation of these simulations.*
- **Specific tests in HiRadMat are hence highly recommended** as well as detailed characterization of strength models via advanced experimental mechanics.
- Conceptual design of HiRadMat sample holder has been showed.
- With a suitable calibration of beam parameters (number of bunches, dimension of the spot, etc.) it would be possible, thanks to HiRadMat, to **investigate material behavior at high pressure and strain-rate with this new kind of "impacts".**
- **Coupling between FLUKA and Hydrocodes (LS-Dyna, Autodyn)** is ongoing to evaluate effects of relevant variation in material density for multi-bunch impacts.

Thank you for your attention

We wish to warmly thank the FLUKA team (F. Cerutti, V. Boccone EN-STI) for the quality and quantity of their inputs.

The work of H. Richter (DGS/RP) and D. Campanini (EN-MME) in developing and making available Fluka-Autodyn interfaces is also kindly acknowledged.

Bonus Slides

A. Dallocchio - CERN

Equation of State Modelling

Material Modelling

Johnson-Cook

$$\sigma_{y} = \left(A + B\varepsilon_{pl}^{n}\right)\left(1 + C\ln\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{0}}\right)\left(1 - \left(\frac{T - T_{ref}}{T_{melt} - T_{ref}}\right)^{n}\right)$$

Steinberg-Guinan

$$\begin{cases} \sigma_{v} = \sigma_{0} \left[1 + \beta \left(\varepsilon_{pl,i} + \varepsilon_{pl} \right) \right]^{h} \cdot \frac{G}{G_{0}} < \sigma_{MAX} \\ \frac{G}{G_{0}} = \left[1 + bPv^{1/3} - h(T - 300) \right] \\ T_{melt} = T_{m0} \exp \left[2a(1 - v) \right] v^{-2(\gamma_{0} - a - 1/3)} \end{cases}$$

EN Engineering Department

When the temperature reaches the value of the melting temperature the shear strength of the material model becomes zero **and starts to be considered like a fluid (pure hydrodynamic behaviour).** "These models have typically been tested and calibrated with experiments on Hopkinson bars, Taylor cylinders, and with high-explosive (HE)–driven shock or compression waves at pressures up to a few tens of GPa and strain rates of 10³ to 10⁵ s⁻¹" <u>Remington et al.</u>

For the future, improvement in the material strength model is a fundamental aspect!

Copper (FCC) Tungsten (BCC) New materials? Cu-Diamond, Mo-Diamond

Material Modelling

A shock Wave propagating through the interface between two solids (A and B) can be reflected and transmitted depending on the incident angle.

Impedance $Z=\rho_0 U_s$ (ρ_0 - initial density, U_s - sound speed inside the material) We can define 3 cases:

- \checkmark Z_A > Z_B \rightarrow Reflected and Incident Pressure Waves have opposite sign;
- \checkmark Z_A = Z_B \rightarrow The Incident Pressure Wave is totally transmitted (No reflected Pressure Wave);
- ✓ $Z_A < Z_B$ → Reflected and Incident Pressure Waves have same sign.

Through the interface W-Cu (with $Z_W > Z_{Cu}$) the Pressure Wave is reflected with opposite sign.

Accident Simulations for TCT

- Shock-wave propagation (5TeV Single-bunch impact)
- Damage is confined to W as energy escaping W blocs is limited (shock impedance at W-Cu barrier).

Backup Slide 3 -- Maximum Pressure

- Single-bunch cases: Maximum Pressure ≤ 30 GPa
- 8 bunches case reaches 148 GPa

Accident Simulations for TCT

Particle Impact on Tank

LHC Collimation

CERN

- The maximum pressure on water in the single-bunch cases is 200 bar, above the tested value of 120 bar but without provoking damages to the copper pipes
- The energy deposited during the impact on the water is negligible, leading to an increase of temperature smaller than 0.1 K and to a pressure of less than 1 bar. Therefore the incoming pressure on water is only due to the wave propagation

LHC Collimation

FRN