

LIEBE:

Design of a molten metal target based on a Pb-Bi loop at CERN-ISOLDE

T. De Melo Mendonca, M. Delonca, D. Houngbo, C. Maglioni, L. Popescu, P. Schuurmans, T. Stora

(May 21, 2014)

Outline

- Introduction/context
- Proposed design
- Diffusion simulations
- Numerical results
 - Heat Exchanger (HEX)
 - Beam impact
- Conclusion & next steps

Introduction/context...

Introduction/context (1)

Aim of LIEBE target: validation of conceptual design for the EURISOL direct target by developing a prototype for **CERN-ISOLDE**.

Some keywords: high power target, short-lived isotopes, ...

5/23/2014

 Collaboration started in May 2012 for the LIEBE (Liquid Eutectic Lead Bismuth Loop Target) project:

WP definition	WP holder	Coordinator
 WP1 : Coordination WP2 : Conceptual Design and simulations WP3 : Construction, assembly WP4 : Instrumentation WP5 : Safety and Licensing WP6 : Target characterization and analysis WP7 : Radiochemistry WP8 : Offline commissioning WP9 : Online operation 	CERN SCK-CEN CERN CERN CEA PSI SINP IPUL	T. Stora P. Schuurmans M. Delonca T. Mendonca A. Marchix D. Schumann S. Lahiri K. Kravalis

Introduction/context (2)

ISOLDE: on-line isotope mass separator @ CERN

5/23/2014

Introduction/context (3)

RTRIUMF

ISOL Method

This method involves the interaction of light ion beam onto a thick high-Z target material,

The fragments are imbedded into the bulk of the target material.

- The radioactive atoms diffuse to the surface of the grain material,
 - diffusion process with efficiency ε_D
- Then the atom undergo desorption and move from place to place randomly until it find the exit of the target container,
 - effusion process with efficiency ϵ_E
- The radioactive atom enter the ion source where it is ionized,
 - ionization process with efficiency ε_I

Y = Φ_p σ (NA/A τ) ε_D ε_E ε_I

6

Proposed design...

Proposed design (1)

Proposed by EURISOL

Proposed design (2)

Current front end + target

Current target unit Diameter: 300 mm

Proposed design - main part (3)

* D. Houngbo, SCK-CEN

Proposed design – HEX (4)

HEX LBE

"Casserole" in between water and LBE

5/23/2014

5th High Power Targetry Workshop

Proposed design – HEX (5)

5 working temperatures defined in step of 100 °C5 inlets on each side1 outlet on each side

For each working temperature defined, only two inlets are used.

Diffusion simulations ...

Diffusion simulations (1)

• Diffusion: model from Fujioka et al. (NIM 186 (1981) 409)

Courtesy T. Mendonca, CERN

$$f(\hat{t}) = \frac{2.n}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{c_{m+\tau_D/\tau_N}}$$

With τ_D = characteristic diffusion time = $a^2/_{\pi^2*D}$ a = radius of droplet D =diffusion coefficient of tallium in LBE **at 600** °C τ_N = mean life of isotope

- Diffusion optimized for droplets shape
- Need a grid on the container to create the shower

Holes diameter: 0.1 mm, Thickness plate: 0.5 mm Material: SS304L

Diffusion simulations (2)

Diffusion

Improvement of diffusion with temperature

Maximum operating temperature limited by vapor pressure of LBE

 177 Hg (T_{1/2}= 130 ms) as reference:

 Increasing droplet radius will decrease the released fraction
 Diffusion efficiency of 38% for 100 ms,

44% for 200 ms in the diffusion chamber

Courtesy T. Mendonca, CERN

Diffusion simulations (3)

- Conclusions
 - Diffusion efficiency is improved with:
 - Droplet shape
 - Temperature
 - Falling time of the droplets (lower outlet velocity, longer falling distance)

Numerical results...

Numerical results – HEX (1)

 Need to keep the target at the desired working temperature for temperature ranging from 200 °C till 600 °C

Pump power extraction Temperature (° C) 200300400500600 Beam Pump Power losses (W) 4080 150260500Pump Radiation Radiation power extraction HEX Temperature (° C) 200300 400 500600 Power losses (W) 3687 150260420200300 400500600 Power (W) min max \min max \min max \min max \min max 330990 330990 330990 330990 330990 beam $2\ 200$ pump 330 to 990 W Beam radiation 36 87 15026042080 40150260500pump 2 200 W Pump HEX 24543 114 23633 023 $2\ 230$ 2 890 $2\ 010$ 2 670 1 6102 270

Numerical results – HEX (2)

• Assessment of HEX behavior with CFX

Dimensioning of an HEX: $P = H * S * \Delta T_{lm} \text{ with } \Delta T_{lm} = \frac{\Delta T_2 - \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)} \text{ and } H = \frac{1}{\frac{1}{h_1} + \frac{1}{h_2}}$

Power to be extracted by HEX									
20	00	30)0	400		50		60	00
min	max	min	\max	min	\max	min	max	min	max
$2\ 454$	3 954	2 363	3863	$2\ 230$	3 730	$2\ 010$	$3\ 510$	1 610	3 110

Problem: The HEX must extract less power @ 600 °C than @ 200 °C BUT power extracted depend on the surface of exchange, the average heat exchange coefficient and the temperature of both fluids involved -> need of a variable HEX!

Numerical results – HEX (3)

• Example @ 600 °C

Summary of results:

	T _{max} water (°C)	P _{extracted} (W)
200 °C	78	3 180
300 °C	83	3 050
400 °C	73	2 890
500 °C	68	2 820
600 °C	79	2 650

Numerical results – HEX (4)

- Conclusions
 - Temperature and power extraction are in the proper range (values have been checked over the full range of temperature, from 200 °C up to 600 °C)
 - Further analysis must be computed considering bad thermal contact between the different parts
 - Prototype will validate the design
 - Temperature controlled with heating elements installed all along the loop

Numerical results – Beam impact (1)

- Assessment of beam impact with Fluka & Ansys Autodyn
- Geometry considered

Parameters	Units	Proton values
Energy	GeV	1.4
Frequency	Hz	0.8
Number of bunch	-	3
Bunch spacing	μs	16
Bunch width	ns	200
Total number of particles	p^+	$2.4 e^{13}$
Power deposited	W	985

Isolde beam parameters

EN S T

5/23/2014

Container: Stainless Steel 304, solid part, Lagrangian part Liquid: LBE, SPH elements

Use of 40 gauges along beam axis

Numerical results – Beam impact (2)

Material definition

	LBE 9.940000 Shock 2.580000 1.645000e+003 1.790000 0.000000 0.000000 0.000000 0.000000	(g/cm3) ? (none) (m/s) (none) (s/m) (none) (none) (none)
	9.940000 Shock 2.580000 1.645000e+003 1.790000 0.000000 0.000000 0.000000 0.000000	(g/cm3) (none) (m/s) (none) (s/m) (none) (none) (none) (m/s)
	Shock 2.580000 1.645000e+003 1.790000 0.000000 0.000000 0.000000 0.000000	P (none) (m/s) (none) (s/m) (none) (none) (none) (m/s)
v	2.580000 1.645000e+003 1.790000 0.000000 0.000000 0.000000 0.000000	(none) (m/s) (none) (s/m) (none) (none) (m/s)
v	1.645000e+003 1.790000 0.000000 0.000000 0.000000 0.000000	(m/s) (none) (s/m) (none) (none) (m/s)
v	1.790000 0.000000 0.000000 0.000000 0.000000	(none) (s/m) (none) (none) (m/s)
	0.000000 0.000000 0.000000 0.000000	(s/m) (none) (none) (m/s)
	0.000000 0.000000 0.000000	(none) (none) (m/s)
	0.000000	(none) (m/s)
	0.000000	(m/s)
-		(
	0.000000	(none)
	893.000000	(K)
	140.399994	(J/kgK)
	15.800000	(J/mKs)
[None	_ ?
[Hydro (Pmin)	• ?
[-1.900000e+006	(kPa)
ľ	Yes 🔹	•
i	No	•
i	No	•
		None Hydro (Pmin) -1.900000e+006 Yes No

EN

5/23/2014

• ρ, Cp, k

Shock EOS (Linear model) *Gruneisen model*

 U_s = shock velocity, Γ = Gruneisen coefficient, μ_p = particle velocity, C_0 and S = fitting parameters

- Failure mechanism
 - Hydrodynamic tensile limit
 - 2 values considered: **-150 kPa** and **-1.9 GPa** (no value available for LBE)

Courtesy E. Noah, Un Geneva

Numerical results – Beam impact (3)

Analysis for 50 µs (1 pulse = 32.6 µs) – under hydrodynamic tensile limit

Gauge History (Ident 0 - liebe1pulse5-high-press)

Shock waves deposit energy onto the weakest point of the container (grid part).

Stresses up to 350 MPa (Yield = 390 MPa) in less than 1 ms.

5th High Power Targetry Workshop

24

Numerical results – Beam impact (4)

 Analysis for 50 µs (1 pulse = 32.6 µs) – over hydrodynamic tensile limit

Deformation scale: *9

Cavitation in the liquid will induce splashing of the LBE and projection of droplets with very high velocity in the diffusion chamber.

Numerical results – Beam impact (5)

- Conclusions & Outlook
 - The geometry needs an improvement to avoid resonant shock waves
 - Impact of beam onto the container should be further investigated:
 - Negligible impact expected
 - Need more detailed simulation to prove it
 - Simulation must be computed for longer time

Conclusion & next steps...

Conclusion & next steps

- Preliminary design is available, under optimization
- Test of the Heat Exchanger foreseen
- Optimization of the irradiation container under beam impact on-going
- Off-line tests scheduled in the near future

Thank you for your attention!

Thanks to all the contributors...

- V. Barozier
- A. P. Bernardes
- K. Kravalis
- F. Loprete
- S. Marzari
- R. Nikoluskins
- F. Pasdeloup
- A. Polato
- H. Znaidi
- ... (and many others...)

Back up slides...

Introduction/context (4)

• Specificity of RIBs (Radioactive Ion Beam) production via the ISOL (Isotope separation on-line) technique: Isolde target unit

Introduction/context (5)

• Specificity of RIBs (Radioactive Ion Beam) production via the ISOL (Isotope separation on-line) technique: Isolde target unit

Diffusion/effusion simulations (3)

• Effusion: Monte Carlo

> The effusion efficiency is dependent on the geometry of the container/diffusion chamber, the sticking time, the mean free path and number of collisions with droplets and surface of containment.

Sticking times of $\sim 10^{-12}$ s – negligible effect in efficiency

5/23/2014

ST

Effusion release efficiencies between 22% and 34% for residence times in the diffusion chamber between 100-200 ms

 Estimated release efficiencies (diff+eff) of ~ 8% for 100 ms and ~ 15% for 200 ms.

Thanks to T. Mendonca

Concept 5 - Results

- 1 kg of LBE in Feeder Volume,
- □ 2 feeder grids of 2520 apertures
- 1-mm or 0.5-mm thick feeder grids
- □ 2520 evacuation apertures
- 1.5-m/s inlet velocity
- ~0.2-bar pressure drop
- Stable uniform flow between 500 K - 1500 K

Velocity Vectors (m/s)

High-Power Target Stations. - Mol. Belgium, 16-18 September 2013. - [Presentation]

Numerical results – HEX (3)

Example @ 600 °C

ANSYS Temperature R14.5 temp lbe 2 Academic 8.700e+002 8.532e+002 8.363e+002 8.195e+002 8.027e+002 7.859e+002 7.690e+002 7.522e+002 7.354e+002 7.185e+002 7.017e+002 IK1 T_{max} LBE = 597 °C EN 🛸 STI 5/23/2014

Velocity in water and LBE

Pressure in water for case LBE @ 200 °C

5th High Power Targetry Workshop

Numerical results – HEX (4)

5/23/2014

Summary of results:

	T _{max} water (°C)	P _{extracted} (W)
200 °C	78	3 180
300 °C	83	3 050
400 °C	73	2 890
500 °C	68	2 820
600 °C	79	2 650

Power to be extracted by HEX									
20	00	300 400		500		600			
min	max	min	max	min	max	min	max	min	max
$2\ 454$	3954	2 363	3 863	2 2 3 0	3 730	$2\ 010$	$3\ 510$	1 610	3 110

