

Meson Productions for Target System with GA/HG Jet and IDS120h Configuration

X. Ding (Presenter), D. Cline, UCLA H. Kirk, J.S. Berg, BNL

Muon Accelerator Program Collaboration Meeting SLAC, March 5, 2012

Outline

- Motivation of optimization of GA target
- Introduction of IDS120h Configuration (Target/Collection system, fieldmap and target geometry)
- Optimization methods
- Optimized target parameters and meson productions at proton KE of 8 GeV
- Optimized target parameters and meson productions at different proton KE (Comparison between HG/GA Jet, between IDS120h/Study2a with HG jet)
- Focused Incident Proton Beam
- Summary

Motivation to Optimize GA Target

(Possible target alternative of HG)

Pion/muon yields for different atomic Z's and beam energies (J. Back/X. Ding); Advantages of Gallium: relative efficient meson production (near the NI Peak), liquid state at relatively low temperature (Melting Point = 29.8° C) and potential for easier handling (H. Kirk).

Target/Collection System of IDS120h

cm

Count all the pions and muons that cross the transverse plane at z=50m.

For this analysis we select all pions and muons with 40 < KE < 180 MeV.

Y

Axis Field (Bz at r=0) with IDS120h

The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm.

- Put beam exactly below the HG/GA jet at z=-37.5 cm (see above y-z plot), fix beam/jet intersection point at (0, 0, -37.5 cm) and project beam back to z=-200cm. (Difference: In previous simulation for study 2a, beam launching point is at z=-75 cm.)
- Initial target parameters at proton KE of 8 GeV: target radius of 5 mm, beam angle of 67 mrad at z=-37.5 cm, beam/jet crossing angle of 33 mrad at z=-37.5 cm.
- 3. The SC coils, resistive Cu and Shielding are deleted in MARS code for speeding up simulation (Difference: not so in simulation for study2a).

Optimization Method

• Take 3 runs in each cycle:

1) Vary jet radius with initial beam angle and beam/jet crossing angle;

2) Vary beam/jet crossing angle with new target radius while keeping jet fixed - always project beam back to z=-200 cm;

3) Vary jet angle with new target radius and beam/jet crossing angle-always keep crossing angle constantboth jet and beam must be rotated about intersection point together and always project beam back to z=-200 cm.

• Repeat above cycle until convergence.

Optimized Target Parameters at 8 GeV at z = -37.5 cm

	HG			GA		
	Target radius, mm	Crossing angle, mrad	Beam angle, mrad	Target radius, mm	Crossing angle, mrad	Beam angle, mrad
Initial	(5mm, 33mrad, 67mrad)			(5mm, 33mrad, 67mrad)		
1 st Cycle	4.6	23	120	6.7	21	112
2 nd Cycle	4.15	23	117	5.5	17	94
3 rd Cycle	4.15	21.6	120	4.9	13.2	92
4 th Cycle	4.04	20.6	117	4.5	13	90
5 th Cycle				4.4	12.8	86
6 th Cycle				4.4	13	88

Nuclear interaction length: HG/14.58 cm, GA/23.92 cm.

Meson Productions at 8 GeV (400,000 events)

	HG	GA	[N(GA)-N(HG)]/N(HG)
Before optimization (Target radius/beam angle/crossing angle)	108528 (5mm/67mrad/33m rad, Initial)	96586 (5mm/67mrad/33 mrad, Initial)	-11% (w/t opt)
After optimization (Target radius/beam angle/crossing angle)	131362 (4.04mm/117mrad/ 20.6mrad, end of 4 th Cycle)	114401 (4.5mm/90mrad/ 13mrad, end of 4 th Cycle)	-12.9% (opt)
[N(opt)-N(w/t opt)]/N(w/t opt)	+21%	+18.4%	

Meson Productions Vs. Run No. at 8 GeV

(Number of runs: 0-Initial, 1,4,7,10,13,16-optimized target radius, 2,5,8,11,14,17optimized crossing angle, 3,6,9,12,15,18-optimized beam angle)

Beam Angle (mrad)

Meson Production/(Protons GeV)

Focused Incident Proton Beam at 8 GeV

Focused Incident Proton Beam at 8 GeV (Cont'd)

Summary

- 8 GeV optimized parameters:
 - Hg r=4.04 mm; beam/jet crossing angle=20.6 mrad;
 beam angle = 117 mrad.
 - Ga r= 4.4 mm; beam/jet crossing angle = 13 mrad; beam angle of 88 mrad.
- 8GeV meson production for Ga is 12.9% less than for Hg.

Summary (Cont'd)

- Ga production peaks near KE = 5 GeV and is comparable to Hg at that KE.
- For Hg, meson production is reduced by 15% for a proton beam emittance of 5 μm compared to a 0 μm emittance beam.