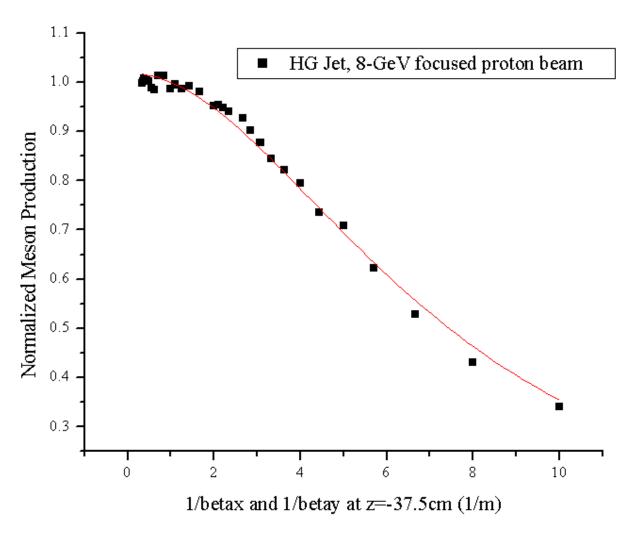

Optimized Target Parameters and Meson Production by IDS120h with Focused Gaussian Beam and Fixed Emittance

X. Ding, UCLA

Target Studies May 29, 2012


Focused Incident Proton Beam at 8 GeV

Relative normalized meson production is 0.84 of max at β^* of 0.3 m for $\epsilon_x = \epsilon_y = 5 \ \mu m$.

For low β* (tight focus) the beam is large at the beginning and end of the interaction region, and becomes larger than the target there.

Focused Incident Proton Beam at 8 GeV (Cont'd)

Non-Linear Fit (Growth/sigmoidal, Hill)

Y=N/(1+K2/beta⁻²) N=1.018 Sqrt(K2)=0.1368

Linear emittance is 4.9 μm with beam radius of 0.1212 cm and β* of 0.3 m.

Gaussian distribution (Probability density)

In two dimensional phase space (u,v):

$$w(u,v) = \frac{1}{2\pi\sigma^2} \exp(-\frac{u^2 + v^2}{2\sigma^2})$$

where u-transverse coordinate (either x or y), $v = \alpha u + \beta u'$

 α , β are the Courant-Snyder parameters at the given point along the reference trajectory.

In polar coordinates (r, θ) :

$$u = r \cos\theta$$
 $v = r \sin\theta$
 $u' = (v - \alpha u)/\beta = (r \sin\theta - \alpha u)/\beta$

Distribution function method

$$\theta = 2\pi \xi_1, \qquad \theta \in [0, 2\pi]$$

$$r = \sqrt{-2\sigma^2 \ln \xi_2}, \quad r \in [0, \infty]$$

Random number generator:

$$\Theta = 2\pi^* \text{rndm}(-1)$$

$$R = \text{sqrt}(-2^* \log(\text{rndm}(-1))^* \sigma$$

Gaussian distribution (Fraction of particles)

• The fraction of particles that have their motion contained in a circle of radius "a" (emittance $\varepsilon = \pi \ a^2/\beta$) is

$$F_{Gauss} = \int_{0}^{a} \frac{1}{\sigma^{2}} e^{-\frac{r^{2}}{2\sigma^{2}}} r dr = 1 - e^{-\frac{a^{2}}{2\sigma^{2}}}$$

Fraction of particles

k=a/σ	$\epsilon_{K\sigma}$	F _{Gauss}
1	$\pi (\sigma)^2/\beta$	39.5%
2	$\pi (2\sigma)^2/\beta$	86.4%
2.5	π (2.5σ) ² / β or ~ 6π σ ² / β	95.6%

Normalized emittance: $(\beta \gamma) \epsilon_{K\sigma}$

Focused beam

Intersection point (z=-37.5 cm):

$$\alpha^* = 0, \beta^*, \sigma^*$$

Launching point (z=-200 cm):

L = 200-37.5 = 162.5 cm

$$\alpha = L/\beta^*$$

 $\beta = \beta^* + L^2/\beta^*$
 $\sigma = \sigma^* \text{sqrt}(1+L^2/\beta^{*2})$

These relations strictly true only for zero magnetic field.

Setting of simple Gaussian distribution

INIT card in MARS.INP (MARS code)

INIT XINI YINI ZINI DXIN DYIN DZIN WINIT

XINI = x0 DXIN = dcx0

YINI = y0 DYIN = dcy0

ZINI = z0 $DZIN = dcz0 = sqrt(1-dcx0^2-dcy0^2)$

(Initial starting point and direction cosines of the incident beam)

Setting with focused beam trajectories

 Modeled by the user subroutine BEG1 in m1510.f of MARS code

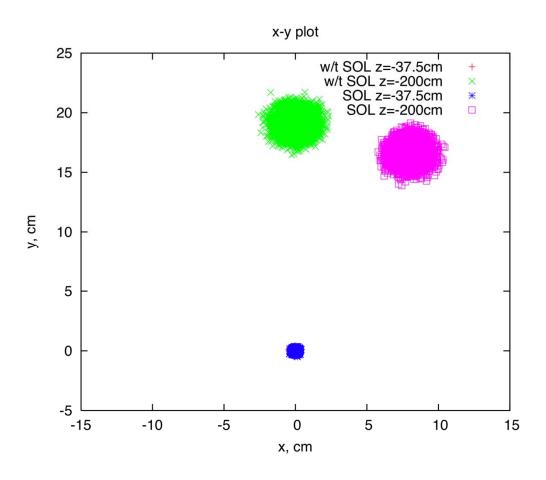
```
x_v or x_h (transverse coordinate: u);

x'_v or x'_h (deflection angle: u')

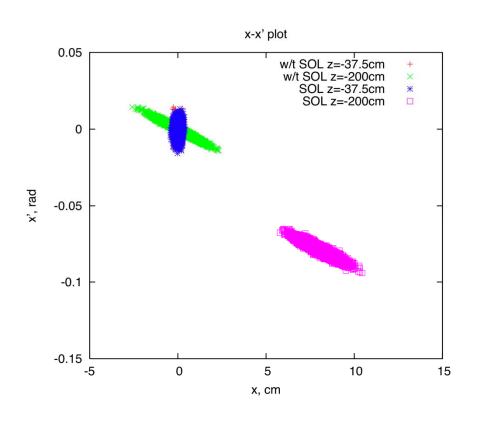
XINI = x_0 + x_v DXIN = dcx_0 + x'_v

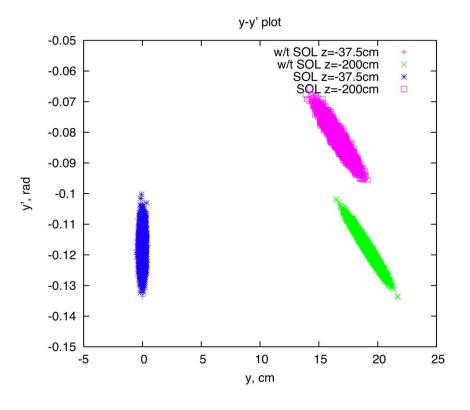
YINI = y_0 + x_h DYIN = dcy_0 + x'_h

ZINI = z DZIN = sqrt(1-DXIN^2-DYIN^2)
```

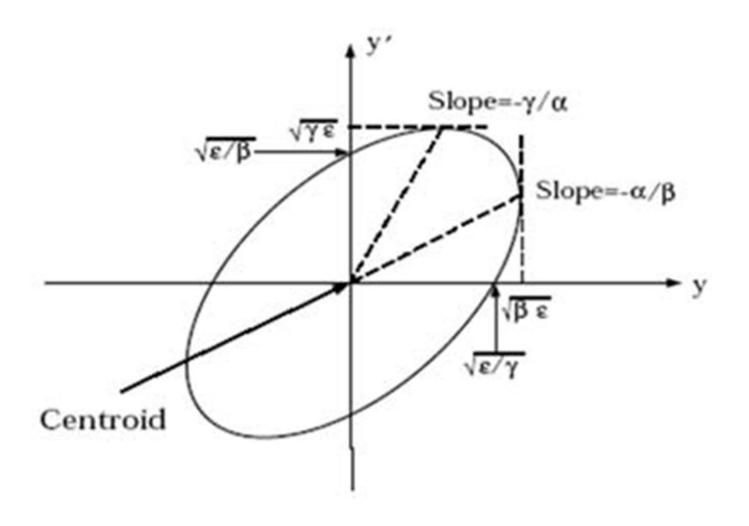

Optimization of target parameters

- Fixed beam emittance $(\epsilon_{K\sigma})$ to $\pi (\sigma)^2/\beta$
- Optimization method in each cycle (Vary beam radius or beam radius σ^* , while vary the β^* at the same time to fix the beam emittance; Vary beam/jet crossing angle; Rotate beam and jet at the same time) We also optimized the beam radius and target radius separately (not fixed to each other).


Effect of Solenoid Field


[Backtrack particles from z = -37.5 cm to z = -200 cm.]

(Could then do calculation of α , β , σ at z = -200 cm, but didn't)



Effect of Solenoid Field

Courant-Snyder Invariant

Optimized Target Parameters and Meson Productions at 8 GeV

(Linear emittance is fixed to be 4.9 μ m)

	(mrad)	(mrad)
0.404 (target)	20.6	117/137.6
0.525 (target)	25	120/145
0.544 (target)	25.4	120/145.4
Beam radius: 0.15 Target radius: 0.548	26.5	127/153.5
	0.525 (target) 0.544 (target) Beam radius: 0.15 Target radius:	0.404 (target) 20.6 0.525 (target) 25 0.544 (target) 25.4 Beam radius: 26.5 0.15 Target radius:

Optimize beam radius and target radius separately

We found almost no improvement in optimized meson production if the beam radius is not fixed at 30% of target radius and optimized separately!

Optimized Meson Productions at 8 GeV

(Linear emittance is fixed to be $4.9 \mu m$)

Gaussian Distribution	Meson Production
Simple (4.04mm/20.6mrad/117mrad)	32563
Focused beam (4.04mm/20.6mrad/117mrad)	27489 (-15.6% less than Simple)
Focused beam with fixed Emittance at 4.9 µm (5.44mm/25.4mrad/120mrad)	30025 (-8.9% less than Simple) (8.4% more than Focused beam)