Meson Production Simulations

X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL

NuFact09

11th International Workshop on Neutrino Factories, Superbeams and Beta Beams July 20-25, 2009 — IIT — Chicago

Outline

- Mercury Target Geometry and Optimized Target Parameters (Beam below Mercury Jet)
- Beam Initial Position, Beam/Jet Crossing Angle and Beam Path Length inside the Hg Jet (Beam below Mercury Jet)
- Multiple Proton Beam Entry Directions (Beam around Mercury Jet)
- Meson Production
- Summary

Neutrino Factory Target Concept

Mercury Target Geometry

- 1. The proton beam is below the Hg jet at z=-75 cm.
- 2. Count all the pions and muons of positives and negatives that cross the transverse plane at z=50m.
- 3. For this analysis we select all pions and muons with 40MeV<KE<180MeV.

Optimized Target Parameters at z=-75cm

- 1. Beam and Jet cross only at z=-37.5cm. Beam angles also vary at different z. So the crossing angle at z=-75cm actually means the angle between beam moving direction and jet.
- 2. Previous Baseline: radius of 0.5cm,beam angle of 67mrad and beam/jet crossing angle of 33mrad.

Meson Production w/wt Optimization

Required Beam Initial Position at z=-75cm to Achieve x=y=0 at z=-37.5cm)

Effect of Different Beam Initial Position

Beam/Jet Crossing Angle at z=-75cm and z=-37.5cm

8GeV, 18.55mrad at z=-75cm and 27.05mrad at z=-37.5cm

Beam Path Length inside the Mercury Jet

Nuclear interaction length for Hg is 14.58cm

> 8GeV, $\theta_j = 96.68mrad$, $r_j = 0.4cm$, $\sigma_b = 0.3r_j$

- ► Roll angle(Φ): Telling us what side of the jet the beam is on. (below: $\Phi=\pi$, up: $\Phi=0$, left: $\Phi=\pi/2$, right: $\Phi=3\pi/2$)
- Clearance: Telling us the extent of proton beam away from the Hg jet at z=-75cm.

$$C = \frac{\sqrt{(x_0 - x_j)^2 + (y_0 - y_j)^2} - r_j}{\sigma_b}$$

 $x_j=0, y_j=3.64$ cm. (x_0, y_0) is beam initial position.

The Required Beam Position at z=-75cm to Keep Same Crossing Angle and 24^o Roll Angle Apart at z=-37.5cm

x-y plot of proton relative to jet at different z

Multiple Proton Beam Entry Directions Clearance at z=-75 cm for Same Crossing Angle and 24° Roll Angle apart at z=-37.5cm

8 GeV, 400000 Protons in the Incident Beam

Multiple Proton Beam Entry Directions Meson 40MeV<KE<180 MeV at 50m for Same Crossing Angle and 24^o Roll Angle apart at z=-37.5cm

Increasing Clearance of p4

Normalized Meson Production (beam below jet)

Normalized Mesons at 50m (beam below jet)

Summary

- Target parameters of incident beam below Hg target and KE from 2 to 100GeV are optimized.
- Beam angles and beam/jet crossing angles vary at low KE due to magnet field.
- The beam path length inside the jet is less than 2 times of the Hg interaction length at low KE.
- Layouts of multiple proton beam entry directions relative to the Hg jet at z=-75cm are determined to achieve the same crossing angle at z=-37.5cm.
- There is about 4% increase in meson production at p11 compared to p6.