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Abstract



1. MHD system of equations  
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2. Numerical simulations and Front tracking   

• The low magnetic Re MHD is a coupled hyperbolic/elliptic system. Operator        
splitting.

• The hyperbolic subsystem is solved on a finite difference grid in both 
domains separated by the free surface  using front tracking numerical  
techniques. 

• Implemented in FronTier code
• Riemann problem for interface propagation
• Complex interfaces with topological changes in 2D and 3D
• High resolution hyperbolic solvers
• Realistic EOS models

• The elliptic subsystem is solved in geometrically complex domains

• Embedded boundary finite volume discretization
• Fast parallel linear solvers 
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• Propagate 
interface
• Untangle interface
• Update interface 
states

• Apply hyperbolic 
solvers
• Update interior 
hydro states

• Generate finite element grid
• Perform mixed finite element discretization

or
• Perform finite volume discretization
• Solve linear system using fast Poisson solvers

• Calculate 
electromagnetic 
fields 
• Update front and 
interior states

Point Shift (top) or Embedded Boundary (bottom) 

2. Numerical simulations and Front tracking   
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2. Numerical simulations and Front tracking   

1. Front propagation is done by solving generalized Riemann problems locally 

2. States on the spatial grid is updated with high order finite difference schemes 
(MUSCL)  



3. Former Work Done  

1.    Development of FronTier-MHD code 

* treat the hyperbolic-elliptic coupled system in the operator splitting manner

* solve the poison’s equation with several techniques

• Study of the stabilizing effect of the magnetic field on the mercury jet

interacting with proton pulses

3.    Study of the jet distortion in the magnetic  field



3. Former Work Done  

Heterogeneous method (Direct Numerical Simulation): Each 
individual bubble is explicitly resolved using FronTier interface tracking 
technique. 

Homogeneous EOS model. Suitable average properties are determined 
and the mixture is treated as a pseudofluid that obeys an equation of 
single-component flow.

Polytropic EOS for 
gas (vapor)

Stiffened Polytropic
EOS for liquid



400 microseconds

3. Former Work Done  

Homogeneous (upper) and 
Heterogeneous EOS (lower)  

with dynamic cavitation

a) B = 0    b) B = 2T  c) B = 4T
d)B = 6T  e) B = 10T



4. Embedded Boundary Elliptic Solver 

(1) Why EB

>  Point-shift grid generation and finite element discretization method

• Second order accurate for gradients
• Compatible with mixed finite element formulation
• Capable of generating grids for vector finite elements
• Not robust (especially in 3D)

>  EB

• Advantages of dealing with complex geometric domains 
• second-order accuracy of solution and robust
• Trivial  work to implement the algorithm in parallel computing



4. Embedded Boundary Elliptic Solver 

(2) Main Points

• Based on the finite volume discretizations

• Potential is treated as cell centered value, even if the center is outside
the computational domain

• Domain boundary is embedded in the rectangular Cartesian  grid, and          
solution is treated as a cell-centered quantity

• Using finite difference for full cell and linear interpolation for cut cell 
flux calculation



4. Embedded Boundary Elliptic Solver 
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• Area is corresponding to the  computational cell on which to make     
integration 

• f i   is the flux across the non-boundary cell edges and  f f  is the boundary
edge flux given by Neumann Conditions.  All fluxes are calculated  at the  
middle point of the edge and dl is the related edge length 

(3)  Principles



4. Embedded Boundary Elliptic Solver 
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Figure 1. Flux Discretization



4. Embedded Boundary Elliptic Solver

(4) Interface Reconstruction and Assumptions 

* The number of intersection of  each cell with the boundary
curve must be either 0 or 2

three possible partial cell configurations

*  Shift the interface point away from cell boundary 
remove small volume cells

e
f

g

Figure 2. Partial cell configurations



5. Algorithm and Validation

(1) Algorithm 
* Reconstruct the interface, record the crossings, and set the component type for grid point

* Count the local number of blocks (both full and partial cells), set the matrix and vector 
dimension for the linear system solver,set global index for  the counted blocks 

*  For partial cells, the necessary information such as cell area, edge aperture, and boundary
normal direction are recorded. Also from the crossing positions and cell corner components, 
the configuration of the cell can be uniquely determined. 

*  A nine-point stencil is set for each partial cell.  With the above information, related stencil
value is set and inserted into the corresponding matrix row.

*  Set up the right hand side for the linear system, which is located at the centroid of each cell.
Note that for partial cell, RHS also needs to include the boundary flux from left side. 

*  Solve the linear system Ax = b with some fast parallel linear solver (PETSc or HYPRE)



5. Algorithm and Validation
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(2). Stencil Setting

Figure 3. Stencil for partial cells



5. Algorithm and Validation

(3) PETSc Introduction

* Stands for the Portable, Extensible Toolkit for Scientific Computation (PETSc)

*  Parallel, non-trivial PDE solvers that deliver high performance  and provide a
distinctly object-oriented interface

* Features an easy-to-use interface to the combination of a Krylov subspace iterative   
method  (Chebychev,GMRES …)  and  a  preconditioner (LU factorization, block  
Jacobi …)

*   By removing the null space of coefficient matrix from the range of the Krylov   
subspace, thus enables the solving of  singular system
(  Cond(A)  1e7  => 1e3 )



(4) Convergence Test

5. Algorithm and Validation
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Figure 4. Computational Domain



5. Algorithm and Validation

Figure 5. Illustration of flux error (X direction)



T = 0

T=0.2

6. Applications 

B=20 Tesla

B=0

Figure 6. Simulation of mercury jet expansion

(1) Mercury Jet simulation with 
S2phase  EOS



6. Applications 



6. Applications 

(2) Mercury Jet simulation with dynamic bubble insertion

B = 0



6. Applications 

(2)  Mercury Jet simulation 

B = 0 T B = 20 T



7. Conclusions and current work

(1) Conclusion

*  Embedded Boundary Method for the 2D Neumann boundary elliptic equations
are implemented into FronTier code and validated over geometrically complex 
domain

*  With application to the MHD system of equations, interface propagation and 
magnetic flux distribution are as expected

*  With boundary buffer communication and index mapping ,combined with some
high performance linear solvers such as  PETSc or HYPRE, above steps can 
be easily parallelized and the related linear system can also be set and solved 
with convenience and flexibilities. 



7. Conclusions and current work 

(2) 3D implementation
* Same principle as 2D 

* Bilinear interpolation of flux


