Solid Target Studies in the UK

Rob Edgecock

On behalf of:

J.Back, E.Bayham, R.Bennett, S.Brooks R.Brownsword, O.Caretta, C.Densham, S.Gray, A.McFarland, P.Loveridge & G.Skoro

Introduction to Solid Targets

- Why solid?
 - lots and lots of experience
 - both liquid targets: looking at solids again
- Candidate materials strong at high temperature
 - tantalum
 - tungsten
- Issues:
 - shock
 - radiation damage
 - temperature rise......changing target, target station, etc
- Possibilities:
 - a number (150-500) of ~2x20cm bars
 - particle jet

Radiation Damage

• ISIS:

- used tantalum for > 10 years, tungsten ~5 years
- targets changed after ~12dpa
- ~2-5 years at NF, depending on # of targets
- no signs of swelling or embrittlement
- Ta examined in detail; W still to be done
- Still to be done
 - tensile strength after irradiation
 - will be done by Nick Simos at BNL

Shock

- Solid show-stopper: one of main reasons for liquids
- Impossible to lifetime test with proton beam, so

60kV, 8kA PSU, 100ns rise time

0.5mm diameter wire

Material	Current (A)	ΔT (K)	Max. T (K)	Pulses to failure	Eq. power
Tantalum	3000	60	1800	0.2x10 ⁶	
Tungsten					
	5560	130	1900	4.2x10 ⁶	2.7/5.0
Connector failed	5840	140	2050	>9.0x10 ⁶	3.0/5.4
	7000	190	2000	1.3x10 ⁶	4.3/7.8
	6200	160	2000	10.1x10 ⁶	3.3/6.1
	8000	255	1830	2.7x10 ⁶	6.1/>13
Cable #6 failed	7440	230	1830	0.5x10 ⁶	5.2/11.4
	6520	180	1940	26.4x10 ⁶	4.1/8.7
	4720	77	1840	>54.4x10 ⁶	2.1/4.5
	6480		~600	>80.8x10 ⁶	4.0/8.6

For 200 targets: 10.6 years in 2cm

>22 years in 3cm

better at lower temperature

Shock - current/next steps

VISAR

- Velocity Interferometry System for Any Reflector
- Surface displacements ~100nm; velocity ~1m/s
- Two main problems: Noise! Moving target
- Signals now being seen new delay line required

Temperature Rise

- ΔT ~100K/pulse; ~5000K /second
- Must change target between pulses:
 - 150-500 targets, swapped between pulses
 - particle jet
- Two (and a bit) methods investigated

Chain:

Speed: ~5m/s

Eddy currents: ok

Forces: ok

B-field: ok

Problems:

moving parts high radiation meshing with chains

Temperature Rise

Forces

Study 2 solenoids

Main problem: radial and hoop stress exceed Cu tensile strength noted as problem in study 2

Forces

"Helmholtz"

radial and axial force components acting on each solenoid (tonnes)
note: radial forces are on a full 360 degree basis

~7kt bending force: "very difficult"

Possible solutions: pulsed NC magnets

smaller B-field (B² effect)

spokeless wheel.....

Spokeless Wheel

Outer diameter: 5m

Speed at rim: 5m/s

Revolution time: 3.14s

Target spacing: 100mm

of targets: 157

Issues:

Eddy currents
Structural support
Target mounting
Radiation damage to support
Drive system
Tritium in water

Particle Jet

Advantages

Solid

- Shock waves constrained within material no splashing, jets or cavitation as for liquids
- Material is already broken
- Reduced chemistry problems compared with the liquid

Fragmented

- a near hydrostatic stress field develops in the particles so high pulsed energies can be absorbed before material damage
- Better for eddy currents?
- Favourable (activated) material disposal through verification

Moving/flowing

- Replenishable
- Favourable heat transfer
- Decoupled cooling
- Metamorphic (can be shaped to convenience)

Engineering considerations:

- Could offer favourable conditions for beam windows?
- It is a mature technology with ready solutions for most issues
- Few moving parts away from the beam!

Particle Jet

Issues

- Is W fluidisable and does it flow?
- What density can be achieved?
- Effects of magnetic field
- Effects of electric charge:
 - frictional electrostatic charge
 - beam charge
- Elastic stress waves and thermal expansion
- Erosion and ware of rig and W particles
- Storage and disposal of radioactive powder

First tests at Gericke Ltd

Particle Jet

- W powder, <250μm particle size
- 3.9bar driving pressure

- Is fluidisable
- Does flow
- Density ~29% v/v

New Test Rig at RAL

Study, in particular:

long term erosion and wear

density

heat transfer

optimum rig arrangement

Conclusions

- Solid:
 - Shock: looks OK, but VISAR & protons needed
 - Radiation damage: looks OK, but detail needed
 - Spokeless target wheel: early days!
 - NB: most information known or calculable no large R&D projects required
- Particle jet:
 - Looks interesting
 - Much work required, but this is starting
 - Use of radioactive powder needs careful study