

Irradiation study of Ti-6Al-4V and Ti-6Al-4V-1B for FRIB beam dump:

Aida Amroussia, PhD Student Chemical Engineering and Materials Science Michigan State University May 19, 2014

Outline

- Irradiation of samples with high energy heavy ions (NSCL-MSU)(Ca 40 @ 2000 MeV) and low energy heavy ions at CIMAP-France
- XRD and TEM observations(in collaboration with CIMAP)
- Surface characterization using SEM-EBSD
- Nano-indentation tests
- Vickers Hardness tests
- Insitu-tensile tests

Irradiation experiments

Facilitie s	Beam	Energy [MeV]	Range [µm]	S _e [keV/n m]	Fluence [ions/cm ²]	Max dpa in sample	Date	Number of samples	Туре
IRRSUD	⁸² Kr	25	4.73	9.9	5.10 ¹¹ - 5.10 ¹² - 2.10 ¹⁴	0.6	Jul-13	6	Foils
IRRSUD	¹³¹ Xe	92	8.5	19.7	2.10 ¹¹	0.001	Jul-13	2	Foils
IRRSUD	⁸² Kr	45	6.43	13.1	5.10 ¹¹ - 5.10 ¹³	0.16	Jul-13	4	Foils
IRRSUD	⁸² Kr	45	6.43	13.1	2.10 ¹⁴ 2.5.10 ¹⁵	8	Oct-13	6	Foils
IRRSUD	³⁶ Ar	36	6.8	7.5	10 ¹⁵	1.5	Dec-13	23	TEM and dogbone
IRRSUD	¹²⁹ Xe	92	8.5	19.7	lf 3 10 ¹⁴ (~10h)	Estimated 1.7	Planned in June-2014		
NSCL	⁴⁰ Ca	2000	800	1.5	6 10 ¹²	10 ⁻⁵	Aug-13	1 x Ti64	Dogbone

XRD and TEM observations(in collaboration with CIMAP)

No evidence of phase transformation or ion track formation in Ti-6AI-4V

Characterization of the microstructure and mechanical properties:

- Scanning electron microscopy (SEM) as well as electron backscatter diffraction (EBSD) were used to characterize the microstructure of the samples before and after irradiation.
- Nano-indentation, Vickers Hardness and in-situ tensile tests were used to investigate the change in the mechanical properties.

Observations

• Deterioration of the quality of the EBSD scan after irradiation.

Ti-6Al-4V

Ti-6Al-4V-1B

SEM and EBSD characterization of the surface of the samples:

IPF and local average misorientation maps the grains before and after irradiation of Ti-6Al-4V

IPF and local average misorientation maps the grains before and after irradiation of Ti-6Al-4V-1B

Local Average misorientation charts

Low energy irradiation: Ar36@36MeV

Comparison between Ti-6AI-4V and Ti-6AI-4V-1B only alpha phase

Ti-6Al-4V

Ti-6Al-4V-1B

Unexpected changes in the local average misorientation for Ti-6Al-4V-1B

Local Average misorientation charts

Comparison between high energy and low energy irradiation

At high energy irradiation, the local average misorientation are more affected in Ti-6Al-4V

Mechanical testing: Nano-indentation

Obtain the properties of the materials in depth. Parameters:

- Berkovich tip
- Strain rate : 0.05s⁻¹
- Poisson ratio=0.33
- Distance between indents: 50µm

SEM image of nanoindents matrix in Ti-6Al-4V irradiated at T= 20 °C and a fluence of 10¹⁵ ions.cm⁻²

Al mask

In all samples one grip was masque in order to compare irradiated to not irradiated properties in the same sample

No change in hardness was observed Decrease in the elastic modulus after irradiation

Vickers Hardness tests:

No change in hardness

12

In-situ Tensile tests: Preliminary results

Ion beam : Ca 40 @2000MeV T= 20°C Fluence = 6.10¹² ions.cm⁻² Max dpa= 10⁻⁵ dpa

Evolution of the microstructure during the test

Ion beam : Ca 40 @2000MeV T= 20°C Fluence = 6.10¹² ions.cm⁻² Max dpa= 10⁻⁵ dpa

Microstructure of irradiated Ti-6Al-4V (a) before the tensile test and (b) at 5.27% strain

In-situ Tensile tests: Preliminary results

Ion beam : Ar@36MeV T= 350 °C Fluence = 10¹⁵ ions.cm⁻² Max dpa= 1.5 dpa

Evolution of the microstructure during the test

Ion beam : Ar@36MeV T= $350 \,^{\circ}$ C Fluence = 10^{15} ions.cm⁻² Max dpa= 1.5 dpa

Microstructure of irradiated Ti-6Al-4V (a) at 6.77% strain and (b) at 9.38% strain

In-situ Tensile tests: Preliminary results

Texture of the tested Ti-6AI-4V

Hongmei L,"ANALYSIS OF THE DEFORMATION BEHAVIOR OF THE HEXAGONAL CLOSE-PACKED ALPHA PHASE IN TITANIUM AND TITANIUM ALLOYS", PhD disservation , Michigan State University

In-situ Tensile tests: Comparison with other Ti64 RT tension Test

For low energy irradiation no change in the mechanical properties (the damage is only on the surface (7 microns).

For high energy irradiation, even at low doses, we observed a significant decrease in the UTS.

Conclusion

- Ongoing analyses:
 - Nano-indentation tests on the cross sections of the samples will allow extraction of hardness and Young modulus for different dpa doses.
 - In-situ tensile tests: Comparison between non irradiated and irradiated Tialloys and slip trace analysis
- Future analyses
 - New EBSD analyses planned after electro-polishing the samples
 - Swelling measurements on each samples
 - Possibility to use FIB (Focused Ion Beams) to study the damage in the depth of the sample for TEM, SEM/EBSD analyses
 - In-situ irradiation and creep test