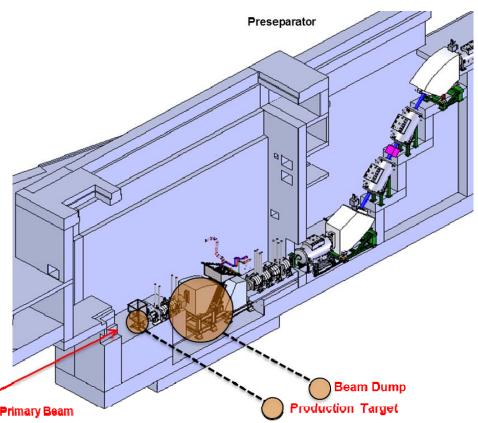


Radiation damage of materials relevant for FRIB production target and beam dump

F. Pellemoine

May 21, 2014


Outline

FRIB context

- FRIB production target
 - Radiation damage studies in graphite
 - Annealing of radiation damage at high temperature
- FRIB beam dump
 - Radiation damage studies in Titanium alloys
 - Low energy swift heavy ion irradiation
- FRIB production target and beam dump
 - Irradiation studies of ferrofluidic feedthrough
- Summary

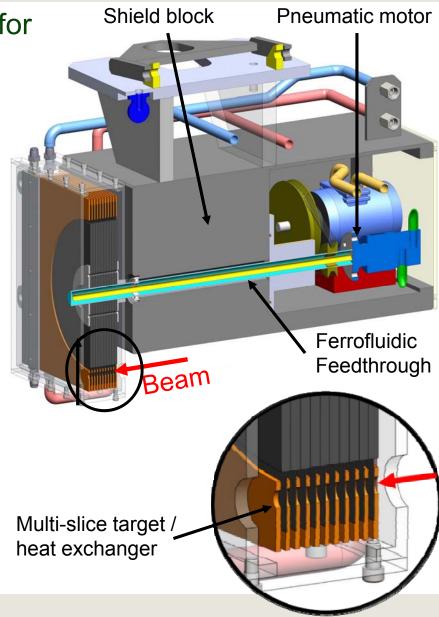
In-flight Rare Isotope Beam Production Facility

- Swift Heavy-ion induced radiation damage
 - 5·10¹³ U ions/s
 - Understanding Swift Heavy Ion (SHI) effects on material that can limit target and beam dump lifetime
 - Different than neutron or proton irradiation
 - » Low gas production
 - » High dpa rate
 - » Electronic excitation ⇒ track formation along the ion path in material
 - Electronic stopping power ~ 1-20 keV/nm for heavy ion beam
 - » Only 10⁻⁶ keV/nm for proton @ 120 GeV in graphite

FRIB Production Target Design

- Rotating multi-slice graphite target chosen for FRIB baseline cooled by thermal radiation
- Target parameters defined by thermomechanical simulations
 - 5000 RPM and 30 cm diameter to limit maximum temperature and amplitude of temperature changes
 - High temperature: ~ 1900°C
 - » Evaporation of graphite mitigated
- Target requirements

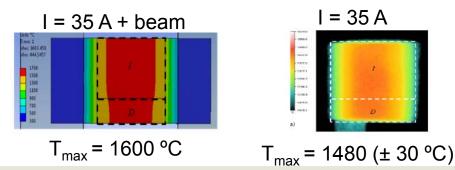
FRI

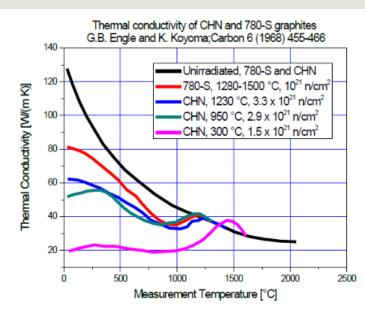

- Up to 100 kW power deposition in 1 mm diameter beam spot
- Target lifetime of 2 weeks desired to meet experimental program requirements » fluence ~7.10¹⁸ ion/cm²

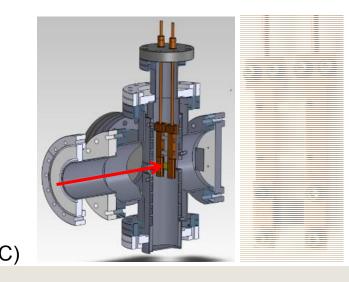
» dpa (U beam) ~ 7 (dpa/rate ~ $6 \cdot 10^{-6}$ dpa/s)

Michigan State University

Facility for Rare Isotope Beams

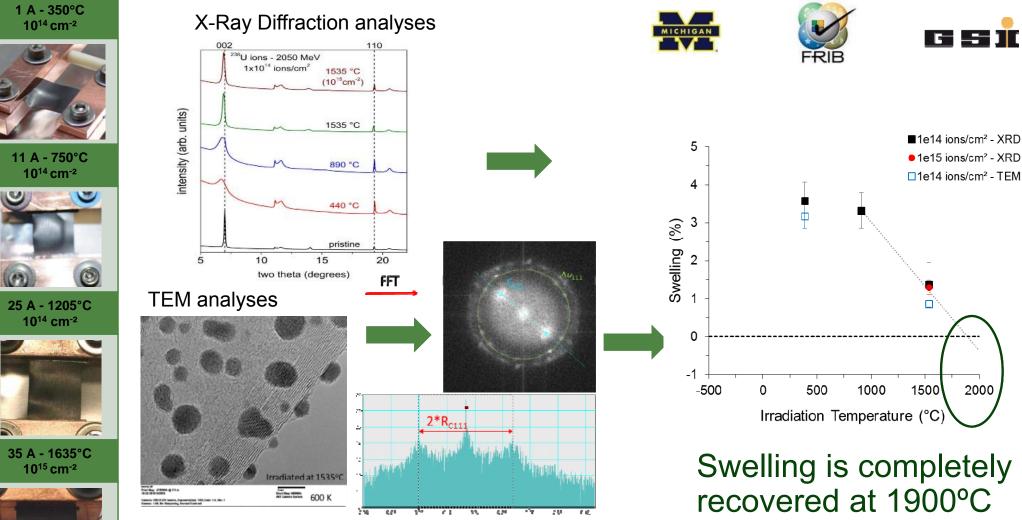

U.S. Department of Energy Office of Science




F. Pellemoine, 5th HPTW - FNAL - May 2014 , Slide 4

Radiation Damage Studies in Graphite For Better Lifetime Predictions

- Irradiations by charged heavy ion induce changes of physical properties ⇒ decrease target performance
 - Thermo-mechanical properties (thermal conductivity, tensile and flexural strength), Electronic properties (Resistivity), Structural properties (microstructure and dimensional changes, Swelling)
- Most of the studies were done with neutron and proton irradiation but not a lot of data for heavy ion beams
- How much will annealing help?
- Two types of polycrystalline graphite (5 and 13 µm grain size) irradiated with Au-beam 8.6 MeV/u
 - Up to 5.6.10¹⁰ cm⁻².s⁻¹, Fluence up to 10¹⁵ cm⁻²
 - Samples heated to different temperature



Radiation Damage Studies in Graphite Annealing of Damage at High Temperature (> 1300°C)

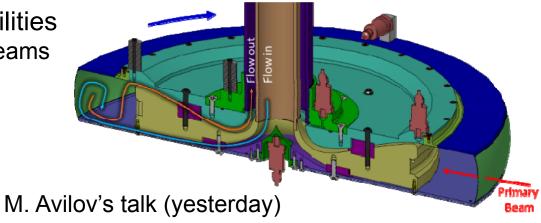
Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

F. Pellemoine, 5th HPTW - FNAL - May 2014 , Slide 6

Radiation Damage Studies in Graphite Annealing of Damage at High Temperature (> 1300°C)

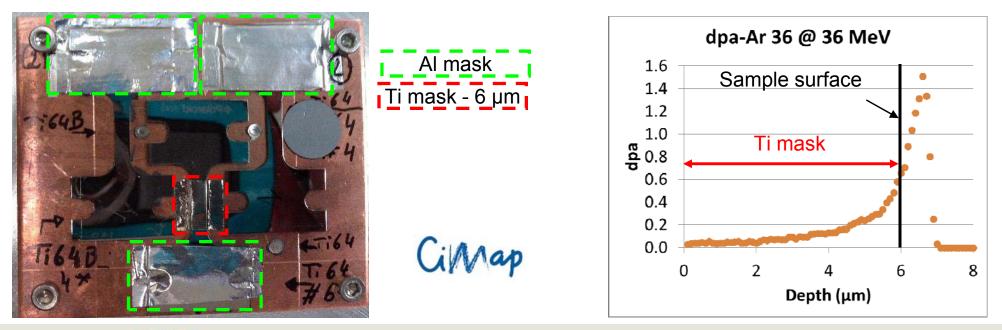
Electrical resistivity change of irradiated Young's Modulus of irradiated graphite Thermal conductivity change of irradiated graphite samples - ¹⁹⁷ Au – fluence 10¹⁴ ions/cm² samples - ¹⁹⁷ Au – fluence 10¹⁴ ions/cm² graphite samples - ¹⁹⁷ Au 1.2 100% 50 1.0 Young's Modulus (GPa) 40 0.8 (*R*-*R*_{1,1})/*R*_{1,1} 9.0 30 ° 10% 첫 20 2320 - 1 A - 110^⁰C 2360 - 1 A - 345°C 2360 - 11 A - 630ºC 10 0.2 2360 - 25 A - 1170°C 2360 - 35 A - 1525^oC 0 0.0 1% 2x10¹³ 8x10¹³ 0 500 1000 1500 2000 4×10^{13} 6x10¹³ 1×10^{14} 0 500 1000 1500 2000 2500 Irradiation Temperature (°C) Irradiation temperature (°C) Fluence (ions/cm²) Facility for Rare Isotope Beams FR U.S. Department of Energy Office of Science F. Pellemoine, 5th HPTW - FNAL - May 2014 , Slide 7 Michigan State University

- Additional analyses (Young's modulus, thermal diffusivity, electrical resistance) of irradiated samples all confirm annealing at high temperature
- Results of material property changes were used as input in thermo-mechanical studies
 - Swelling is completely recovered at 1900°C
 - 30% of thermal conductivity value will be recovered but lead to insignificant change in average temperature of the production target. Main heat transfer in target is thermal radiation at high temperature
 - · Electrical resistivity change has no impact on thermo-mechanical behavior
- Annealing promises sufficient lifetime for FRIB beam production targets



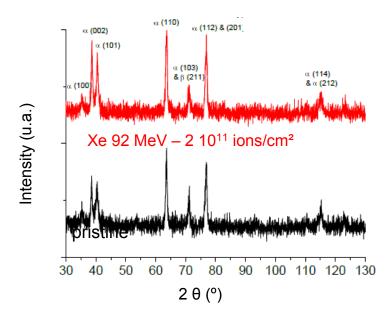
FRIB Beam Dump Design

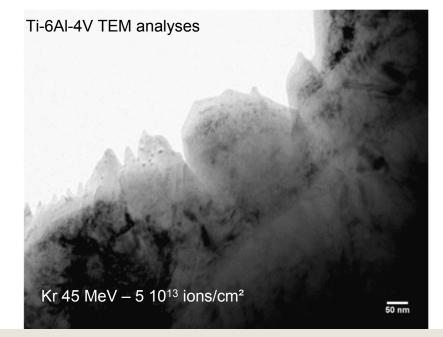
- Water-filled rotating drum beam dump chosen for FRIB baseline
- Parameters defined by thermo-mechanical simulations
 - 400 RPM rotational speed and 70 cm diameter to limit maximum temperature and amplitude of temperature changes
- Beam Dump lifetime of 1 year (5500 h) desired
 - fluence ~10¹⁸ ion/cm²
 - dpa (U beam) ~ 8.5 (dpa/rate ~ $4 \cdot 10^{-7}$ dpa/s)
- No heavy ion beam facility exists that allows us to test all challenges combined together
 - Perform studies that combine some material challenges using existing facilities » Electron beams, neutron beams, SHI beams


 - » Radiation damage, corrosion, creep

Radiation Damage Studies For Better Lifetime Predictions

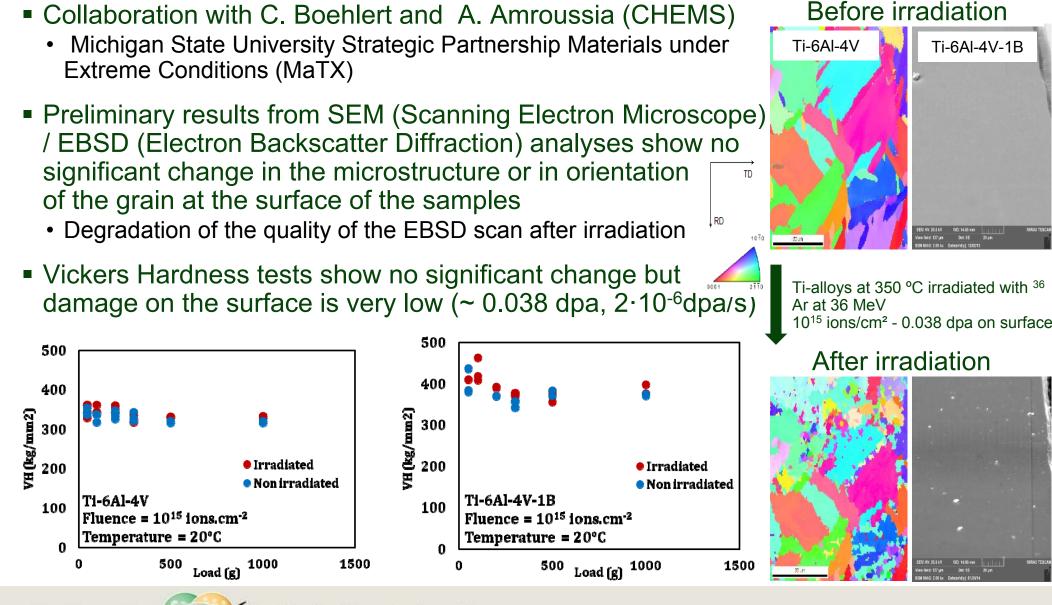
- Systematic comparative radiation damage studies between both Ti-alloys
 - Use of Ti-6AI-4V-1B is preferred for shell material compare to Ti-6AI-4V (M. Avilov's Talk)
- Study influence of different parameters on radiation damage
 - Ion species, beam energy, electronic energy loss Se, fluence
 » IRRSUD CIMAP France: low energy ion beams on Ti-6AI-4V and Ti-6AI-4V-1B
 - 4 beams (³⁶Ar to ¹³¹Xe), 4 energies (25 to 92 MeV), fluence from 2.10¹¹ to 2.5.10¹⁵ ions/cm²
 - 41 samples irradiated: foils, dog-bone and TEM




Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

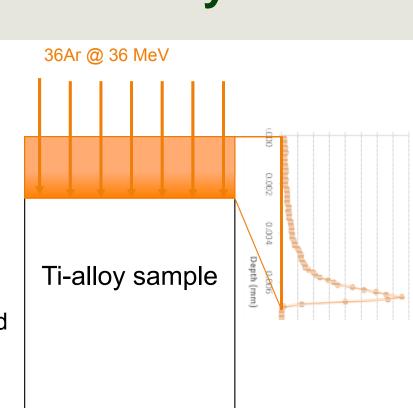
Radiation Damage Studies in Ti-alloys Electronic Excitation Influence

- Are Ti-alloys sensitive to electronic excitation?
- No evidence of phase transformation and ion track in Ti-6AI-4V that promises good radiation resistance of this alloy
 - Ti-alloys not sensitive to electronic excitation by swift heavy ions (Se~ 13 keV/nm – Kr @ 45 MeV; 20 keV/nm – Xe @ 92 MeV)
 » FRIB: Se from 0.08 keV/nm (with O beam) and 12.6 keV/nm (with U beam)


Preliminary XRD results with Ti-6AI-4V

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Low Energy SHI Beam Irradiations No Significant Change Observed



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FR

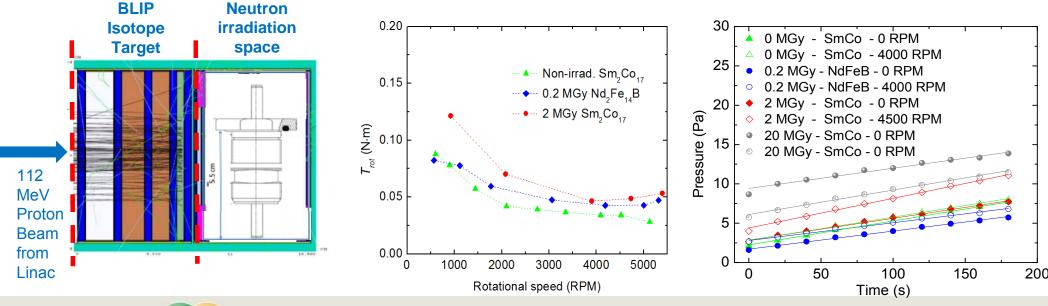
SHI Irradiation Study of Ti-alloys

- Analyses ongoing
 - Nano-indentation study will allow extraction of hardness and Young modulus in the cross section of the sample in order to reach higher dpa
 - In-situ SEM during tensile tests (MSU C. Boehlert)
 - » Study doesn't give bulk properties of Ti-alloys but allows us to observe if the deformation mechanisms on irradiated Ti-alloys are different from un-irradiated samples
- Future analyses
 - New EBSD analyses planned after polishing samples
 - Swelling study for each samples
 - Possibility to use FIB (Focused Ion Beams) to study damage in the depth of the sample for TEM, SEM/EBSD analyses

Design Support for Target and Beam Dump Radiation Effects in Ferrofluidic Feedthroughs

Ferrofluidic Feedthrough will be used in both units (target and beam dump)

- Maximum dose to Ferrofluidic Feedthroughs
 - Target (2 weeks of operation)
 » 1 MGy (¹⁸O beam at 266 MeV/u with 15" cast iron shielding)
 » Estimate 7.5 MGy without shielding
 - Beam dump (1 year of operation)
 - » 3.5 MGy (¹⁸O beam, 637 MeV/u (conservative upgrade-energy assumption) with 5" of steel shielding)



Design Support for Target and Beam Dump Radiation Effects in Ferrofluidic Feedthroughs

- FFFT irradiation tests at BNL in June 2011
 - 0.2, 2, 20 MGy mixed proton, neutron and gamma irradiation from stopped proton beam
- Torque and vacuum tests performed in Nov 2011 and Feb 2012
 - No significant change in FFFT performance observed up to a total dose of 2 MGy
 » Feedthrough blocked for a total dose of 20 MGy
 - » No significant leaks found

FFFT is a valid technical choice

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Summary

- Radiation damage on material for FRIB project are performed
 - with heavy ion beams
 - » Polycrystalline graphite (E = 8.6 MeV/A at GSI)
 - » Titanium alloy : Ti-6AI-4V and Ti-6AI-4V-1B (E = 1 MeV/A at CIMAP)
 - with secondary beams at BNL
 - » Ferrofluidic feedthrough
- Graphite and FFFT studies promise a sufficient lifetime for FRIB production target
- No show-stoppers in Beam dump material studies foreseen but need more investigation with higher dpa and higher energy beam to be closer to FRIB conditions

Acknowledgements

- GSI Darmstadt, Germany
 - Markus Bender
 - Markus Krause
 - Daniel Severin
 - Marilena Tomut
 - Christina Trautmann
- University of Michigan
 - Maik Lang
 - Rod Ewing
 - Weixing Li
- University of Reims Champagne-Ardenne, France
 - Mihai Chirtoc
 - Nicolas Horny
- Institute of Solid State Physics, University of Latvia
 - I. Manika
 - J. Maniks
 - R. Zabels

- Leonard Mausner
- Joseph O'Conor
- Nikolaos Simos
- GANIL-CIMAP, France
 - Florent Durantel
 - Clara Grygiel
 - Isabelle Monnet
 - Florent Moisy
 - Marcel Toulemonde

- Cimap
- MSU Department of Chemical Engineering and Material Science
 - Aida Amroussia
 - Carl Boehlert
- FRIB
 - Mikhail Avilov
 - Tiffany Fourmeau
 - Sandrina Fernandes
 - Wolfgang Mittig
 - Reginald Ronningen
 - Mike Schein

FR 52 1F

Thanks for your attention

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

F. Pellemoine, 5th HPTW - FNAL - May 2014, Slide 17

Back up slides

Ti-alloys irradiations at CIMAP and NSCL

Facilities	Beam	Energy [MeV]	Range [µm]	S _e [keV/nm]	Fluence [ions/cm²]	Max dpa in sample	Date	Number of samples	Туре
IRRSUD	⁸² Kr	25	4.73	9.9	5.10 ¹¹ - 5.10 ¹² -2.10 ¹⁴	0.6	Jul-2013	6	Foils
	¹³¹ Xe	92	8.5	19.7	2.10 ¹¹	0.001	Jul-2013	2	Foils
	⁸² Kr	45	6.43	13.1	5.10 ¹¹ -5.10 ¹³	0.16	Jul-2013	4	Foils
	⁸² Kr	45	6.43	13.1	2.10 ¹⁴ 2.5.10 ¹⁵	8	Oct-2013	6	Foils
	³⁶ Ar	36	6.8	7.5	10 ¹⁵	1.5	Dec-2013	23	TEM and dogbone
	¹²⁹ Xe	92	8.5	19.7	3 10 ¹⁴ estimated	1.7 (Estimated)	June-2014 scheduled		Dogbone
NSCL	⁴⁰ Ca	2000	800	1.5	6 10 ¹²	10 ⁻⁵	Aug-2013	1 x Ti64	Dogbone

