

Status of T2K Target

2nd Oxford-Princeton High-Power Target Workshop 6-7th November 2008

> Mike Fitton RAL

Contents of Talk

- •T2K target station
- Aims of target design
- Current target design
- •CFD analysis
- Remote target exchange concept
- •Future upgrade plans

T2K Target station area

• Inner concrete shields

—Inner iron shields

Support structure = Helium vessel

3rd horns 2nd horns Baffle Target and 1st horns Beam window

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Baffle / Collimator

High power target group, RAL

Test install into Target station October 2008

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

4MW Hadron Absorber

T. Ishida, KEK & C. Densham, RAL

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Aims of Target Design

- Target is graphite rod, 900mm long and 26mm diameter
- Target should be Helium cooled to allow higher operating temperature and to avoid shock waves from liquid coolants
- Target rod to be completely encased in titanium and cooled using high purity helium to prevent oxidation of the graphite
- The Helium should cool both upstream and downstream titanium window first, before cooling the target due to material limits
- Pressure drop in the system should be kept to a minimum due to high flow rate required (max. 0.8 bar available for target at required flow rate of 32 g/s (30% safety margin))
- Target rod to be uniformly cooled, but kept above 400°C to reduce radiation damage effects
- It should be possible to remotely change the target in the first horn

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Target v.0 – September 2008

Target manufactured by Toshiba, Japan

Pipes, Isolators, remote connectors and remote handling/alignment systems by RAL

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Diffusion Bond + Graphite-Graphite bonding test

IG43 Graphite diffusion bonded into Ti-6AI-4V titanium, Special Techniques Group at UKAEA Culham

Graphite transfer to Aluminium

 Aluminium intermediate layer, bonding temperature 550°C
 Soft aluminium layer reduces residual thermal stresses in the graphite

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Testing of graphite bonding

Adhesive cured and fired to 1000°C Fracture strength ~40MPa Failure through substrate, not bondline

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

CFD Analysis outline

Required flow rate

Boundary conditions

- Inlet Mass flow rate = 25g/s and 32g/s
- Helium Inlet temperature = 300K
- Outlet Pressure = 0.9 bar (gauge)

Heat deposition from MARS simulation

- On target as a function in r and z
- On upstream and downstream window as radial function
- On Inner graphite tube as a function of z
- On Outer tube as a total source
- TOTAL HEAT LOAD = 22kW

Velocity streamlines & Pressure drop

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Steady state target temperature

698ex0, 159ex0, 849ex0, 2538ex0, 3.228ex0, 10, 000ex0, 296ex0, 985ex0, 615ex0, 364ex0, 3.228ex0, 4.66ex0, 2.96ex0, 6.985ex0, 615ex0, 364ex0, 1.364ex0, 1.364

0.118

0.236

0.354

(m)

30 GeV, 0.4735Hz, 750 kW beam

Helium mass flow rate = 32g/s

Radiation damaged graphite assumed (thermal conductivity 20 [W/m.K] at 1000K- approx 4 times lower than new graphite)

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

[C]

Temperature (Contour 3)

Target window temperatures

He flow test with actual target

Target helium compressor

–Power consumption: 34kW –Helium gas leak rate < 1.1×10⁻⁵[Pa⋅m/s]

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Target installed within 1st magnetic horn

Prototype Target remote exchange system

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Target remote exchange system

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Future upgrade plans

1st April 2009 – Start operation 2010 – Power to 750kW

2014 – Power to <u>1.66MW</u>

20? ? – Power to 3-4MW

Only Hadron absorber and DV currently designed for this power

Only approximately 50kW deposited in target, however

- With current setup helium ΔT too high (350°C)
- Need to increase flow rate \rightarrow Higher pressure
 - May need to modify target and HX to lower ΔP

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Radiation damage likely to be limiting factor for target life

200 MeV proton fluence ~10^21 p/cm2 c. 1 year operation in T2K Water cooled

Nick Simos, BNL

2nd Oxford-Princeton High-Power Target Workshop Mike Fitton

Irradiation effects on Graphite

Expected radiation damage of the target

- The approximation formula used by NuMI target group : 0.25dpa/year
- MARS simulation: 0.15~0.20 dpa/year
- *Dimension change* : shrinkage by ~5mm in length in 5 years at maximum. ~75µm in radius

Degradation of thermal conductivity ... decreased by 97%

@ 200 °C 70~80% @400°C

Magnitude of the damage strongly depends on the irradiation temperature. – It is better to keep the temperature of target around $400 \sim 800 \circ C$

