Front-end lattice starting after the target area (update III)

Gersende Prior European Organization for Nuclear Research (CERN)

Front-End meetings

7 June 2011

Make a front-end lattice that starts at z > 6 m in order to:

- be able to load a beam file that has included the pions/muons phase space after interaction in the target surrounding material (including the Be window at z = 6m).
- be independent on the target area designs changes that may/will occur in the future (taper change, magnet arrangements, shielding)
- be independent on the taper profile (choose an area where is constant)
- Doing the exercise on the ISS lattice (aka ST2a for test purpose):
 - MARS and ICOOL field profile matches
 - choose z = 50 m as place to hand off the beam file (also where the figure of merit is computed).
 - allow to compare MARS and ICOOL particles yield where we hand off the beam file.

Technicality

ICOOL:

create a shorter lattice which contains only the front-end elements from z = 50 m to end of the lattice (it cuts part of the drift section).

MARS:

translate the MARS beam output at 50 m (fort.82) into an ICOOL file where the z position is shifted by 50 m (z = 0).

without smearing the time of the particles.

ICOOL/MARS magnetic fields on axis are the same (excepted small difference at z ~14 m)

```
Checking particle phase space (1/5)
Particle yields @50 m:
   \pi+ - ICOOL = 2579 - MARS = 2072 (24%).
   \mu+ - ICOOL = 18749 - MARS = 16996 (10%).
   \pi--ICOOL = 1820 - MARS = 1584 (15%).
   \mu--ICOOL = 17942 - MARS = 16020 (12%).
 ICOOl has more optimistic yields (no material in the
```

drift+ difference in tracking or other processes ?).

Checking particle phase space (2/5)

 π^- distribution in R at z = 50 m

Similar distribution in R for pions.

 π^{+} distribution in R at z = 50 m

Checking particle phase space (3/5)

 π^- distribution in pT at z = 50 m

Similar distribution in pT for pions.

Checking particle phase space (4/5)

PZP2

Entries

Mean

1019

722.3

Similar distribution in pz for π -. Shift of the mean by 56 MeV/c for π +

Checking particle phase space (5/5)

260 280 300 Time [ns]

Similar distribution in t for pions.

Checking particle phase space (6/5)

Similar distribution in R for muons.

 μ^+ distribution in R at z = 50 m

Similar distribution in pT for muons.

0₀

450 5

pT [MeV/c

Checking particle phase space (8/5)

1000 1500

pz [MeV/c]

Checking particle phase space (9/5)

 μ^- distribution in time at z = 50 m

550 600 Time [ns]

First attempt (1/2)

Positive muons/kaons/pions - t $_{ref} = 0$:

don't set particle reference time. Normally ICOOL should assign to the reference particle <t>. ICOOL knows how to do it since in for009.dat, at z = 0.

Only a 1/10 of the particles remaining.

Tallies:

- 19069 weighted $\pi/K/\mu$ at start
- 709 weighted $\pi/K/\mu$ lost with flag -23 (particle radius not defined in region).
- 914 weighted $\pi/K/\mu$ lost with flag -43 (pz < PZMINTRK).
- 327 weighted $\pi/K/\mu$ lost with flag -76 (stepping gave results with r > 100 m or pT > 1000 GeV/c.
- 1422 remaining particles at the end of the front-end with 187 of them passing the ecalc9f acceptance cuts.

Where did all the other particles go?

First attempt (2/2)

Starting to loose muons when entering the rotation section .

Problem with PHASEMODEL (use model 4 for rotator and model 3 everywhere else) ?

Problem with tref?

Why the RF phase is not adjusted in the rotator but the buncher seems ok ?

50 < pz < 400 MeV/c $A_{\perp} = 30 \text{ mm}$ $A_{//} = 150 \text{ mm}$ tail cut off 4 pz-A \perp correlation

14

Second attempt (1)

Positive muons/kaons/pions - t $_{ref} = \langle t \rangle \sim 175.40$ ns:

Assign to the reference particle <t> in the first REFP data card.

Similar lattice performance.

4152 (ISS) and 3253 (short) μ+ within ecalc9f acceptance.

10% less muons at start come from the difference in tracking using either MARS (short) or ICOOL (ISS).

Loosing muons in the cooling section.

Verification (1)

Use as input file the ICOOL ISS output (positive muons/kaons/pions) at 50 m - t $_{\rm ref}$ = <t> \sim 178.26 ns:

Assign to the reference particle <t> in the first REFP data card.

Similar lattice performance.

4152 (ISS) and 4376 (short) muons within ecalc9f acceptance.

5% (negligible) more muons compared to the ISS lattice.

Effect of target material (and/or tracking ?) on particles distribution:

Loss of particles is up to 12% for muons and up to 25% for pions if using MARS.

phase-space distribution remains unchanged (except π + pz).

Important for the FE optimization to hand off the particles beam at a location where the particles loss in material is only driven by the front end design configuration.

Short ICOOL lattice:

- Need to set reference particle time to <t> in the first REFP data card.
- Lattice performance after ecalc9f cuts \sim 30% less muons compared to the ISS lattice (not due to the 12% less particles at input).

Need to verify MARS/ICOOL aperture and material in the first 50 m.

Need to track muons phase space also in buncher/rotator/cooling.

Is the tref problem a bug of 3.10 (need to check with more recent ICOOL versions) ?

Need to perform the same exercise on the IDR lattice but we need a MARS IDR simulation (who is in charge/willing to be in charge?).