

LBNE Target R&D/Conceptual Design Activities and Opportunities

Path to ^a 2 MW LBNE Target

P. Hurh9/9/09Updated 10/14/09

\bullet 2 MW Target Challenges

Overview

- \bullet Possible Work Packages
- \bullet Other Target Related Issues
- \bullet Path to 2 MW Target

Putting 2 MW into perspective: 2

Putting 2 MW into perspective: 2

Note: Very early conceptual design stage (for civil construction estimating purposes)!

2 MW Target Challenges

- Heat removal
- \bullet Thermal shock (stress waves)
- \bullet **• Radiation damage**
- Oxidation & Rad Accelerated Corrosion
- \bullet • Spatial constraints
- **Residual radiation**
- \bullet **• Physics optimization**

Heat Removal

 \bullet 25-30 kW total energy deposited (IHEP) **• Easy to remove with water**

- **Tritium production**
- Hydrogen gas production
- Thermal shock in water (Water Hammer)
- 150 atm IHEP report

Heat Removal

- \bullet • 2 Phase cooling (bubbles)
- 2 Phase cooling (heat pipe)
- \bullet • Spray cooling (NuMI horn)
- \bullet • Helium cooling (T2K 750 kW target)

Ta-rod after irradiation with 6E18 protons in 2.4 μ s pulses of 3E13 at ISOLDE

Simulation of stress wave propagation in Li lens (pbar source, Fermilab)

- Sudden expansion of material surrounded by cooler material creates a sudden local area of 2.4 µs pulses of 3E13 at ISOLDE lens (pbar source,
Sudden expansion of material surrour
cooler material creates a sudden loc;
compressive stress
- Stress waves (not shock waves) move through the target material
- Plastic deformation or cracking can occur

- Graphite materials particularly good for thermal shock (lower Cp, lower CTE, very low E, high strength at elevated temps)
- Beryllium is not as good, but perhaps survivable
- Pre-loading either in compression is favorable to reduce the effect
- Shorter "slugs" reduce cumulative effects in the longitudinal direction
- Remember radiation damage changes properties!
- \bullet • Must design for accident conditions
	- \bullet Max intensity and smallest spot size
	- \bullet Max rep rate
	- \bullet Off-axis (asymmetric) beam on target

SNS Hg Target Cavitation problems

200 WNR pulses on test target

- \bullet • Ongoing work at RAL-Sheffield by R. Bennett and G. Skoro to study solid targets for NuFact
	- \bullet ● Pulsed W wire testing
	- \bullet Benchmark simulation techniques
	- \bullet • Show promise of solid W at 4 MW

Goran Skoro

Introduction Current pulse – wire tests at RAL

Schematic circuit diagram of the wire test equipment

Vacuum chamber. 2×10^{-7} -1×10⁻⁶ mbar

at high temperatures Tungsten – much better!!!

The Finite Element Simulations have been used to **calculate equivalent beam power in a real target and to extract the corresponding lifetime.**

Lifetime/fatigue tests results I, II, III –> 'chronology'.

We have got better with

35 SEI

Goran Skoro

Results

Radial displacement as a function of energy deposition (0.3 mm diameter wire)

- \bullet Displacements in metal crystal lattice
	- \bullet **Embrittlement**
	- \bullet Creep
	- \bullet **Swelling**
- \bullet • Damage to organics/plastics
	- \bullet Cross-linking (stiffens, increase properties)
	- \bullet Scission (disintegrate, decrease properties)

Molecular Damage Simulations of peak dama ge state in iron cascades at 100K.

R. E. Stoller, ORNL.

- **Tungsten cylinders** irradiated with 800 MeV protons and compressed to 20% strain at RT.
	- \bullet • A) Before irradiation
	- \bullet B) After 3.2 dpa
	- \bullet C) After 14.9 dpa
	- \bullet D) After 23.3 dpa

S. A. Malloy, et al., Journal of Nuclear Material, 2005. (LANSCE irradiations)

- Atom displacement causes changes in material properties
- Not much literature on high energy proton irradiation of materials
- $\bullet\,$ Lots of information on low energy neutron $_{\rm{Pic}\, t}$ irradiation (nuclear reactors)

Pictures from N. Simos talk

- Tests at BLIP (BNL) by N. Simos indicate total failure of graphite and c-c at about 10²¹ protons/cm 2
- If correct, LBNE target lifetime would be 3-4 months, necessitating quick change-out mechanisms
- NT-02 showed reduction in yield more or less consistent with the BNL test
- IG-430 (nuclear grade) may be promising
- Metals such as Be and Ti also are affected but not as catastrophically for the same fluence (windows, target casing, not just for target)

Oxidation

Figure 2 : Effect of irradiation on poor quality graphite. Kosiba and Dienes USAEC RID-7565 Ppart 1) 1959.

Figure 3a : Oxidation of Poco AXF-5Q in flowing air.

- \bullet Oxidation reaction is very fast for carbon at high temperatures
- 0 Need sealed target jacket with beam windows and pump/purge system
- 0 Beryllium avoids this?

Beryllium avoids this?

Oak Ridge National Laboratory

Radiation Accelerated Corrosion

- Al 6061 samples displayed significant localized corrosion after 3,600 Mrad exposure.
- Enhanced tritium uptake and permeation through austenitic Stainless Steel (300 series) R.L. Sindelar, et al., *Materials*

FIG. 8. Localized corrosion on 6061 Al sample exposed 12 weeks to saturated water vapor at 200°C and gamma irradiation.

Characterization 43:147 -157(1999).

Radiation Accelerated Corrosion

- MiniBooNE 25 m absorber HS steel failure (hydrogen embrittlement from accelerated corrosion).
- NuMI target chase air handling condensate with pH of 2.
- NuMI decay pipe window concerns.

Radiation Accelerated Corrosion

 \bullet Photograph of NuMI decay pipe US window showing corroded spot corresponding to beam spot

Spatial Constraints

- Low energy optics mean target must be inserted in throat of horn
- Little room for cooling (greater water hammer effect)
- Mount target to horn?
- Integrate target into horn inner conductor (Be target material)?
- \bullet If so, target design tied much more closely to horn design (high current, magnetic forces)

Residual Radiation

- \bullet Dose rates for 2 MW beam components estimated at 300-400 Rad/hr
- Systems for component change-out and repair must be developed (IE Remote Handling)
- Operations activities must be integrated into the conceptual design of target components

Survivability is relative

- $\bullet\,$ P-bar consumable target
	- \bullet Ran in consumable mode for 2 plus years
	- Change-out time 12 hours maximum
	- Over-heating, oxidation, thermal shock led to damage

Iterative process makes it difficult to isolate the design efforts

Possible Work Packages

-
- \bullet Water hammer investigation/experiment
- \bullet **• Radiation damage** investigation/experiment
- \bullet • Beryllium thermal shock investigation
- \bullet • Integrated target/horn conceptual design
- \bullet 700 kW target design (using IHEP 2 MW core concept)
- \bullet • Beam window conceptual design

Water Hammer

- Analysis and simulation to investigate water hammer effect
- Benefit Single phase water cooling
- Who ANL, RAL?
- Status Contract for 4 weeks of Engineering time with ANL in place. Preliminary results indicate that pressure spike is 50 atm (instead of 150 atm)
- Future Design test to confirm?

- Irradiation test at BLIP with new promising materials in vacuum (instead of water bath)
- Investigate radiation damage in candidate materials
- **Benefit Longer target lifetime**
- $\bullet\,$ Who BNL, ANL?, ORNL?
	- BNL for irradiation and sample characterization
	- ANL/ORNL for correlation of neutron irradiation with high energy proton irradiation
	- ORNL for consult on irradiated properties of graphite?
- Status
	- \bullet Meeting with BNL (no funds committed) to design test
	- \bullet Contract with ANL for 1 week material scientist
	- \bullet Have not contacted ORNL

LBNE Beam, Fermilab, October 14, 2009

BLIP/LBNE MARS15 Simulations - N.V. Mokhov

DPA Composition

Physics process contribution (%) at beam axis: z=15 cm (NuMI) and Box 2 POCO graphite (BLIP)

In summary, $DPA/yr = 0.45$ (NuMI) and $~1.5$ (BLIP) for 4.e20 p/yr and 1.124e22 p/yr, respectively.

Beryllium Thermal Shock

- \bullet Analysis to explore the use of Be as a target material
- \bullet **Benefits**
	- \bullet Longer target lifetime
	- \bullet • Elimination of windows and pump/purge system
	- \bullet Possible integrated target/horn design
- Who RAL (T2K target engineering team)?
- \bullet Status - Talking with C. Densham at RAL. No funds committed.

Integrated Target/Horn

- Analysis and conceptual design to use the target as the inner conductor of Horn 1
- Benefit Identifies difficulties with that design solution early.
- Who RAL?, ANL?, IHEP?
- \bullet Status - No contacts have been initiated for this task yet

700 kW Target Design

- Using 2 MW target "core" design, complete conceptual design of an LBNE baseline target assembly capable of 700 kW beam power
- **•** Benefits
	- \bullet \bullet Facilitates baseline cost/schedule estimate
	- \bullet Provides experience with the IHEP 2 MW design conce p t
- Who IHEP, RAL?
- Status Initiating contact on this task (currently IHEP is working on the ME target for NOvA)

2 MW Beam Window

- Analysis and conceptual design of a replaceable beam window capable of 2 MW beam power
- Benefit Facilitates baseline cost/schedule estimate
- Who RAL?, ANL?, IHEP?
- Status No contacts have been initiated for this task yet

Other Target Hall Issues

- \bullet Remote stripline connection (ORNL, RAL, ANL)
- \bullet Radioactive component handling (ORNL)
- \bullet Radiation accelerated corrosion (ANL, BNL)
- Air versus water cooled decay pipe (ANL, ORNL)
- \bullet High current horn conceptual design (??)
- Water cooled chase steel shielding (ANL, ORNL)
- Heat pipe target cooling (IHEP)

Path to 2 MW Target Flow Chart

Eventual Solutions?

- \bullet Long Lifetimes are preferable (obviously)
- \bullet Be only considered if Long Lifetimes are confirmed
- \bullet Want to be well on path to defining design concept by CD - 1
- \bullet Remote Handling issues (and thus civil work) cannot be reasonably estimated until target (and other components) conceptual designs are solidified
- \bullet Until then, must assume most conservative solution (most costly and time consuming) and work on these issues in parallel as much as possible!

Looking at it another way…

And yet one more way…

Path to 2 MW Target

The scheduling exercises show:

- \bullet Although irradiation damage questions may be unanswered, progress on the path to a 2 MW Target may be satisfactory for $\mathsf{CD}\text{-}1$ at the end of $\mathsf{CY}2010?$
- Parallel tasks in 2010 will require many resources. Even if "outsourced", significant oversight and support effort is required from FNAL scientists and engineers.
- \bullet Dependencies on 2 MW Target choices drive "informed" conceptual design activities until late in 2012. So early "worstcase" assumptions will be used for Civil Construction conceptual design (cost estimates).
	- \bullet • This risks driving costs and contingencies even higher.
	- \bullet This risks "boxing" the component technical designs "in a corner".

Path to 2 MW Target

The schedulin g exercises show:

- \bullet If the BLIP irradiation test can be pushed up to the 2010 spring run without sacrificing quality, significant gains can be realized.
	- \bullet Conceptual Design for 2 MW Target defined by end of CY2010.
	- \bullet **• Conceptual Design of other components 9 months earlier.**
	- "Informed" conceptual design activities completed for Target Hall infrastructure and civil construction 9 months earlier.

Path to 2 MW Target

In Conclusion:

- \bullet Much work to be done in a short amount of time with limited engineering resources
- \bullet Will concentrate on:
	- \bullet Irradiation testing of candidate target materials
	- \bullet • Investigation of "water hammer"
	- \bullet Analysis of Be as target material
	- \bullet 700 kW baseline design
- \bullet We will also pursue:
	- \bullet Correlation of neutron to proton radiation damage
	- \bullet 2 MW primary beam window
	- \bullet Remote handling issues
	- \bullet Decay pipe cooling
	- \bullet Integrated Target/Horn 1 concept

New P-bar Target

