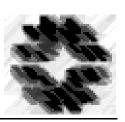
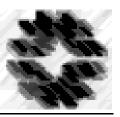


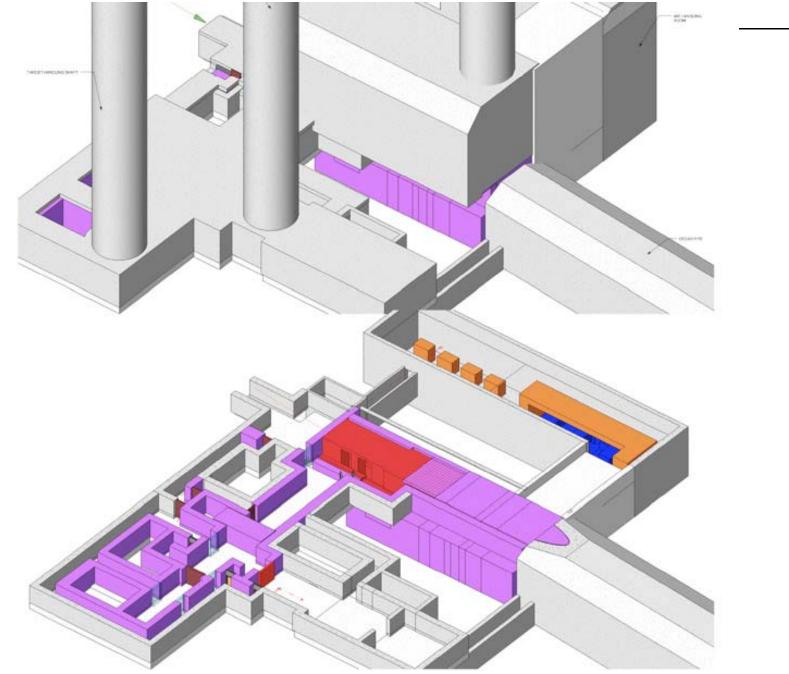
LBNE Target R&D/Conceptual Design Activities and Opportunities


Path to a 2 MW LBNE Target

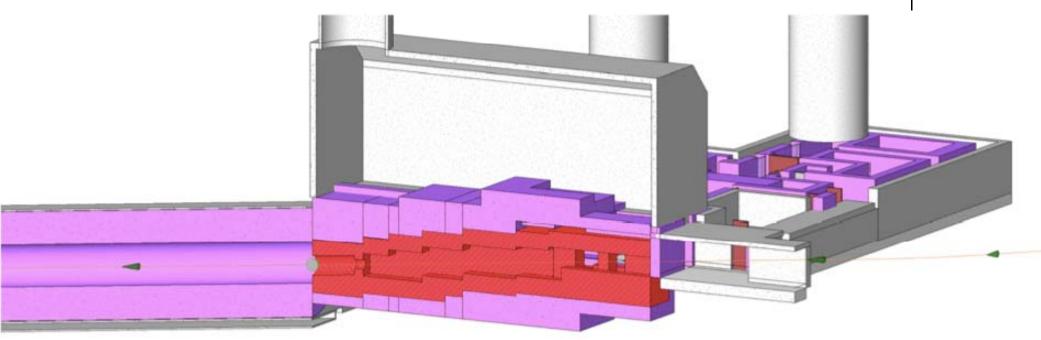
P. Hurh 9/9/09 Updated 10/14/09

2 MW Target Challenges


- Possible Work Packages
- Other Target Related Issues
- Path to 2 MW Target


Overview

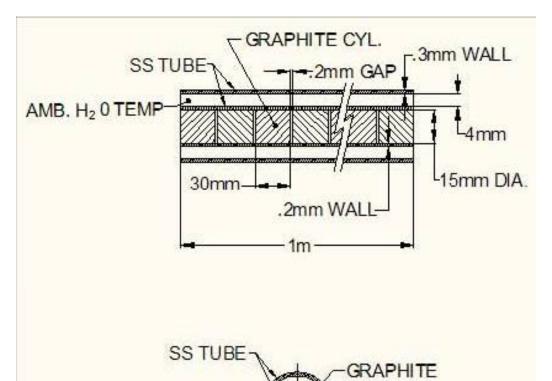
			Beam	Pulse					
Facility	Status	Target Material	Duration (μs)	Rep Rate (Hz)	Energy (GeV)	Time Ave Power in Beam (MW)	Peak Time Ave Power Density (MW/m ³)	Peak Energy Density (MJ/m³/pulse)	
BNL Neutrino Superbeam	Under Study	C-C Composite	2.6	2.5	28	1	4,060	1,630	
ESS - short pulse	Under Study	Hg	1.2	50	1.334	5	2,500	50	
ESS - long pulse	Under Study	Hg	2,000	16.7	1.334	5	2,500	150	
EURISOL	Under Study	Hg	3	50	2.2	4	100,000	2,000	
IFMIF	Under Study	Li	С	W	0.04 (D ₂)	10	100,000	NA	
IIINA	Under Const		7.E+05	0.3	50	0.75	7,600	5,300	
JPARC - Neutrino bean	Under Study	С	5	0.3	50	0.75	83	300	
LANSCE - APT irradiation tests	Dismantled	W	1,000	20	20 0.8	0.8	800	40	
LANSCE - Lujan	Existing	W	0.25	20	0.8	0.1	350	18	
LANSCE - Mats Test Station	Under Study	Pb-Bi	1,000	120	0.8	0.8	2,400	20	
LEDA as fusion mats test facility	Under Study	Li	С	W	0.04 (D ₂)	2	100,000	NA	
MiniBoone	Existing	Ве	150	5	8	0.032	120	24	
NLC - conventional	Under Study	W Re	0.26	120	6.2	0.086	334,800	2,790	
NLC - undulator	Under Study	Ti alloy	0.26	120	0.011	0.126	1,110,000	9,200	
NuMI	Existing	С	8.6	0.53	120	0.4	320	600	
ANU/NOvA	Under Study	С	10	0.75	120	0.7	450	600	
Project X	Under Study	С	10	0.7	120	2.3	630	900	
Pbar	Existing	Inconel 600 + É	1.6	0.5	120	0.052	7,650	15,300	
RIA	Under Study	Li, Be, Hg, W, É	CW		1-96 (p to U	0.4	< 4,000,000	NA	
SINQ/Solid Target	Existing	Pb, SS-clad	С	W	0.575	0.72	720	NA	
SINQ/MEGAPIE	Under Const	Pb-Bi	C	W	0.575	1	1,000	NA	
SNS	Under Const	Hg	0.7	60	1	2	800	13	
US Neutrino Factory	Under Study	Hg	0.003	15	24	1	3,800	1,080	
From: 1st HP Target	ry Workshop i	n Long Island NY in	2003.						


Putting 2 MW into perspective:

Putting 2 MW into perspective:

Note: Very early conceptual design stage (for civil construction estimating purposes)!

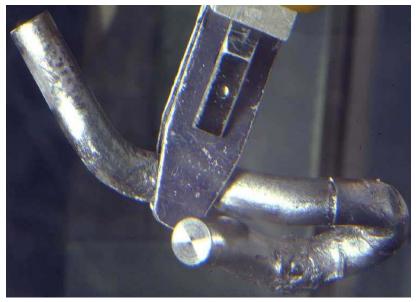
2 MW Target Challenges



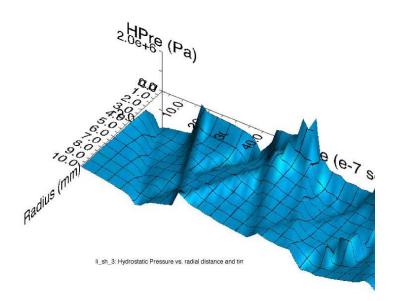
- Heat removal
- Thermal shock (stress waves)
- Radiation damage
- Oxidation & Rad Accelerated Corrosion
- Spatial constraints
- Residual radiation
- Physics optimization

Heat Removal

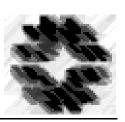
25-30 kW total energy deposited (IHEP)Easy to remove with water


 H_2

- Tritium production
- Hydrogen gas production
- Thermal shock in water (Water Hammer)
- 150 atm IHEP report


Heat Removal

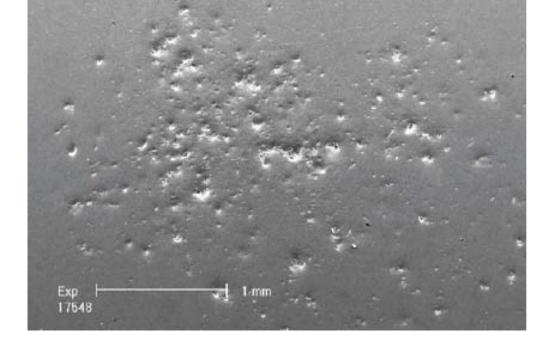
- 2 Phase cooling (bubbles)
- 2 Phase cooling (heat pipe)
- Spray cooling (NuMI horn)
- Helium cooling (T2K 750 kW target)

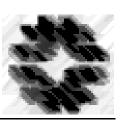


Ta-rod after irradiation with 6E18 protons in 2.4 μ s pulses of 3E13 at ISOLDE

Simulation of stress wave propagation in Li lens (pbar source, Fermilab)

- Sudden expansion of material surrounded by cooler material creates a sudden local area of compressive stress
- Stress waves (not shock waves) move through the target material
- Plastic deformation or cracking can occur

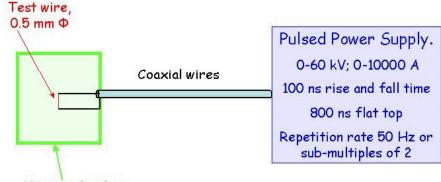

- Graphite materials particularly good for thermal shock (lower Cp, lower CTE, very low E, high strength at elevated temps)
- Beryllium is not as good, but perhaps survivable
- Pre-loading either in compression is favorable to reduce the effect
- Shorter "slugs" reduce cumulative effects in the longitudinal direction
- Remember radiation damage changes properties!
- Must design for accident conditions
 - Max intensity and smallest spot size
 - Max rep rate
 - Off-axis (asymmetric) beam on target



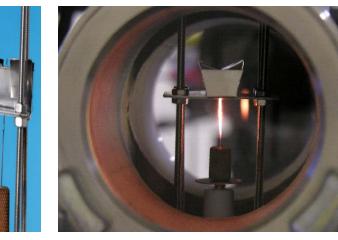
SNS Hg Target Cavitation problems

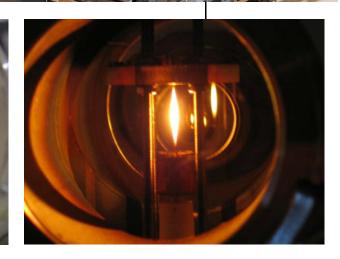
200 WNR pulses on test target

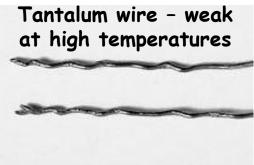
B. Riemer, ORNL


- Ongoing work at RAL-Sheffield by R. Bennett and G. Skoro to study solid targets for NuFact
 - Pulsed W wire testing
 - Benchmark simulation techniques
 - Show promise of solid W at 4 MW

Goran Skoro

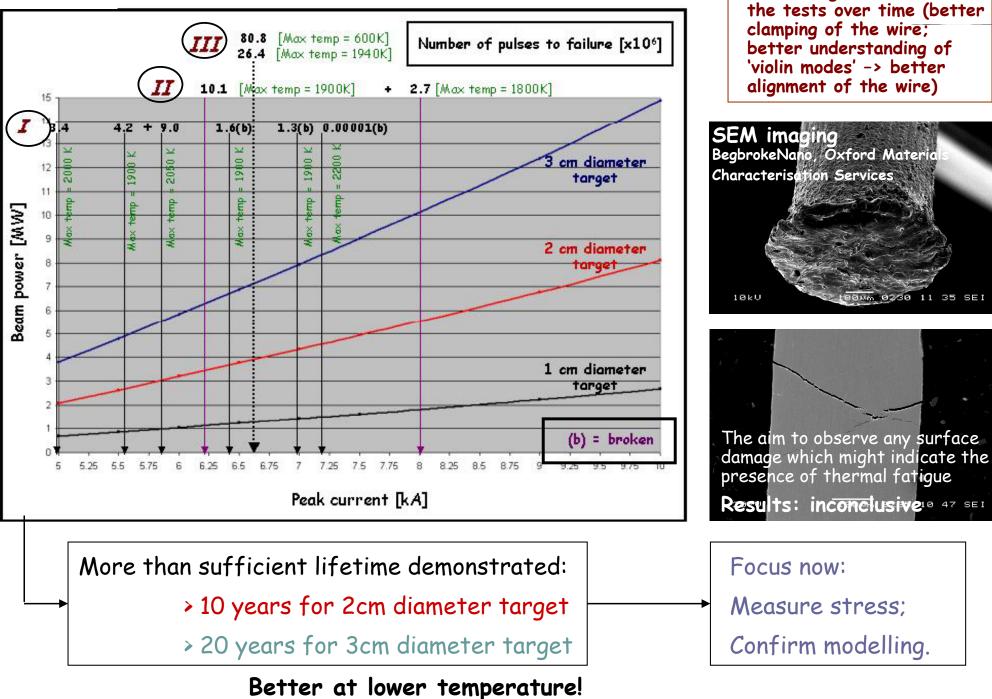

Introduction Current pulse - wire tests at RAL


Schematic circuit diagram of the wire test equipment


Vacuum chamber, 2×10⁻⁷ -1×10⁻⁶ mbar

Tungsten - much better!!!

<u>The Finite Element Simulations have been used to</u> <u>calculate equivalent beam power in a real target and to</u> <u>extract the corresponding lifetime.</u>

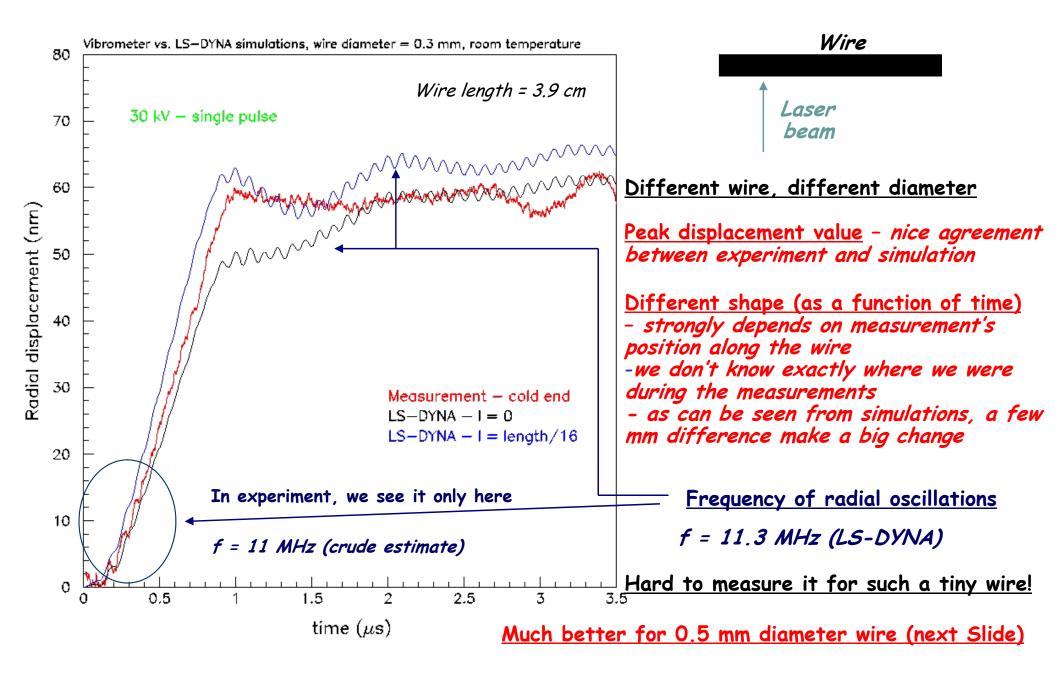


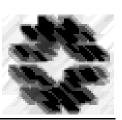
Lifetime/fatigue tests results

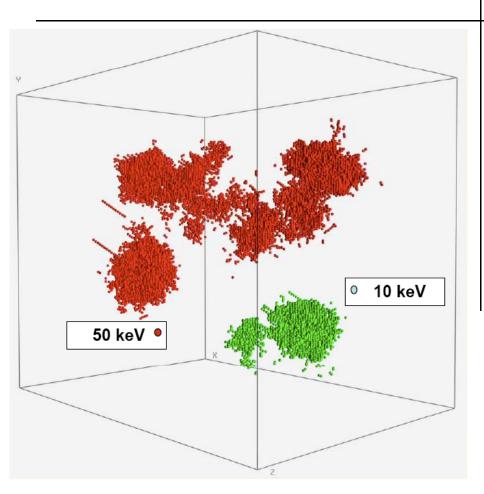
I, II, III -> 'chronology'.

We have got better with

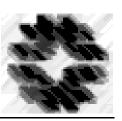
35 SEI



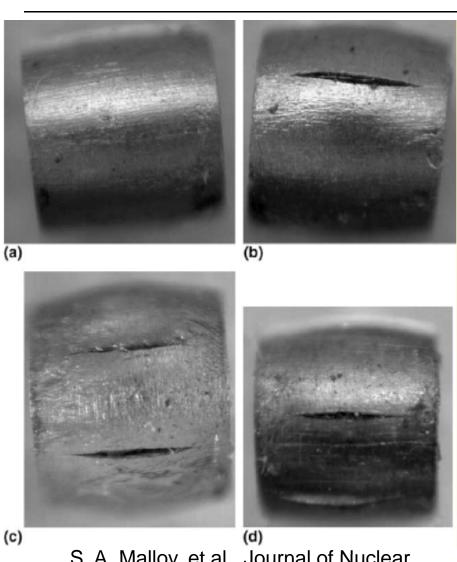

Goran Skoro


<u>Results</u>

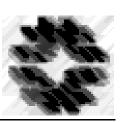
Radial displacement as a function of energy deposition (0.3 mm diameter wire)

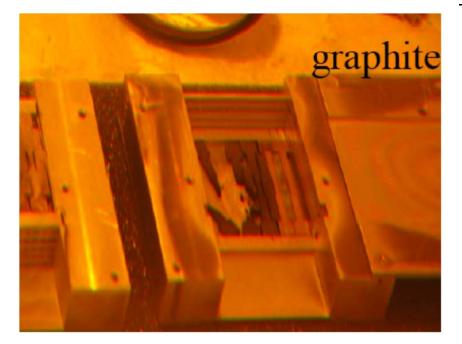


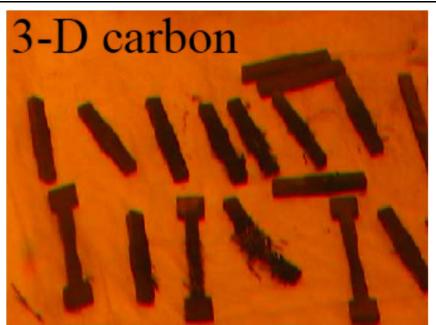
- Displacements in metal crystal lattice
 - Embrittlement
 - Creep
 - Swelling
- Damage to organics/plastics
 - Cross-linking (stiffens, increase properties)
 - Scission (disintegrate, decrease properties)



Molecular Damage Simulations of peak damage state in iron cascades at 100K.


R. E. Stoller, ORNL.




- Tungsten cylinders irradiated with 800 MeV protons and compressed to 20% strain at RT.
 - A) Before irradiation
 - B) After 3.2 dpa
 - C) After 14.9 dpa
 - D) After 23.3 dpa

S. A. Malloy, et al., Journal of Nuclear Material, 2005. (LANSCE irradiations)

- Atom displacement causes changes in material properties
- Not much literature on high energy proton irradiation of materials
- Lots of information on low energy neutron irradiation (nuclear reactors)

Pictures from N. Simos talk

- Tests at BLIP (BNL) by N. Simos indicate total failure of graphite and c-c at about 10²¹ protons/cm²
- If correct, LBNE target lifetime would be 3-4 months, necessitating quick change-out mechanisms
- NT-02 showed reduction in yield more or less consistent with the BNL test
- IG-430 (nuclear grade) may be promising
- Metals such as Be and Ti also are affected but not as catastrophically for the same fluence (windows, target casing, not just for target)

Oxidation

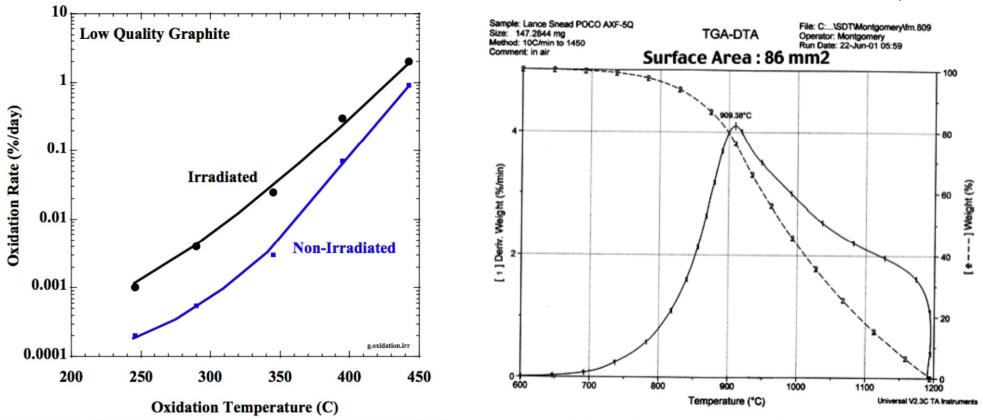


Figure 2 : Effect of irradiation on poor quality graphite. Kosiba and Dienes USAEC RID-7565 Ppart 1) 1959. \P

Figure 3a :Oxidation of Poco AXF-5Q in flowing air. 4

- Oxidation reaction is very fast for carbon at high temperatures
- Need sealed target jacket with beam windows and pump/purge system
- Beryllium avoids this?

Lance Snead and Tim Burchell Oak Ridge National Laboratory

Radiation Accelerated Corrosion

- Al 6061 samples displayed significant localized corrosion after 3,600 Mrad exposure.
- Enhanced tritium uptake and permeation through austenitic Stainless Steel (300 series)

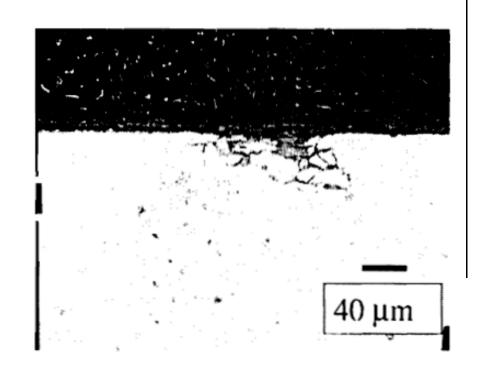
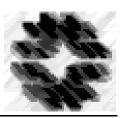
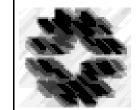
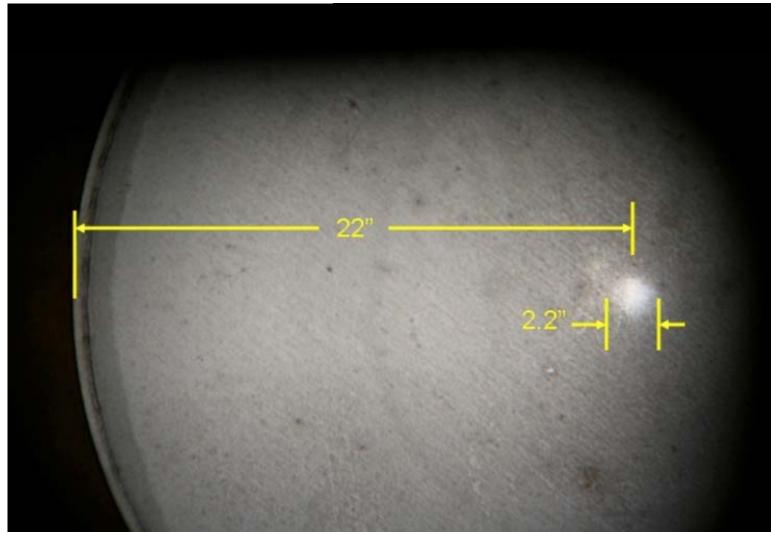



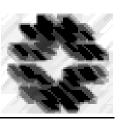
FIG. 8. Localized corrosion on 6061 Al sample exposed 12 weeks to saturated water vapor at 200°C and gamma irradiation.


R.L. Sindelar, et al., *Materials Characterization* 43:147-157 (1999).

Radiation Accelerated Corrosion

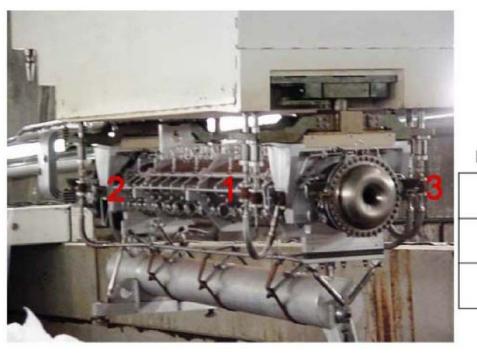


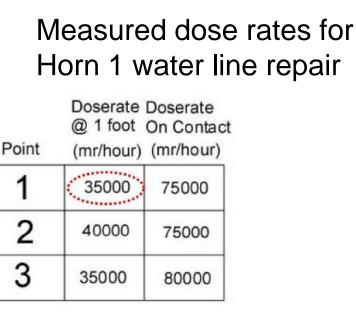
- MiniBooNE 25 m absorber HS steel failure (hydrogen embrittlement from accelerated corrosion).
- NuMI target chase air handling condensate with pH of 2.
- NuMI decay pipe window concerns.



Radiation Accelerated Corrosion

 Photograph of NuMI decay pipe US window showing corroded spot corresponding to beam spot

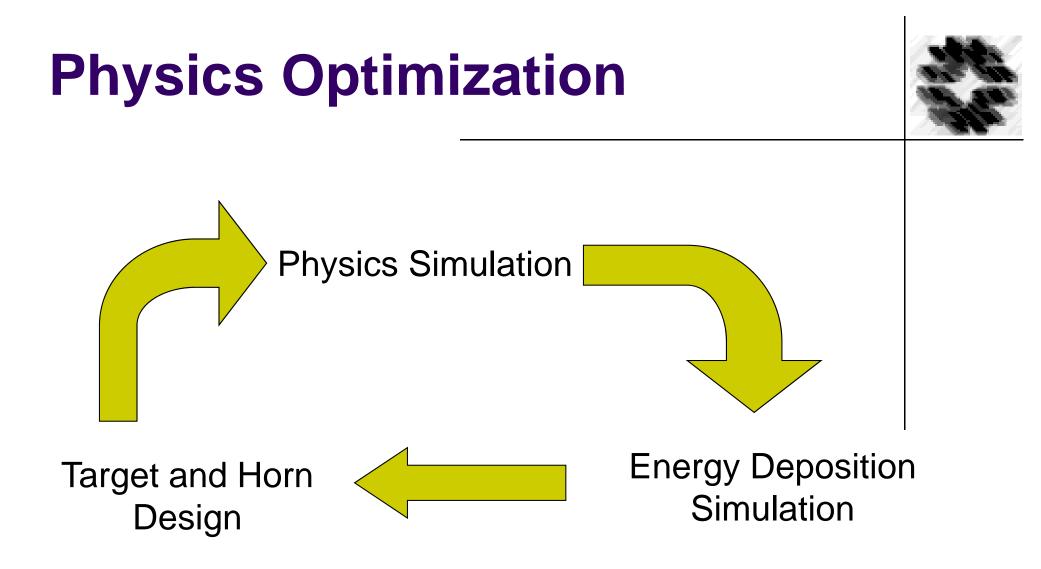

Spatial Constraints



- Low energy optics mean target must be inserted in throat of horn
- Little room for cooling (greater water hammer effect)
- Mount target to horn?
- Integrate target into horn inner conductor (Be target material)?
- If so, target design tied much more closely to horn design (high current, magnetic forces)

Residual Radiation




- Dose rates for 2 MW beam components estimated at 300-400 Rad/hr
- Systems for component change-out and repair must be developed (IE Remote Handling)
- Operations activities must be integrated into the conceptual design of target components

Survivability is relative

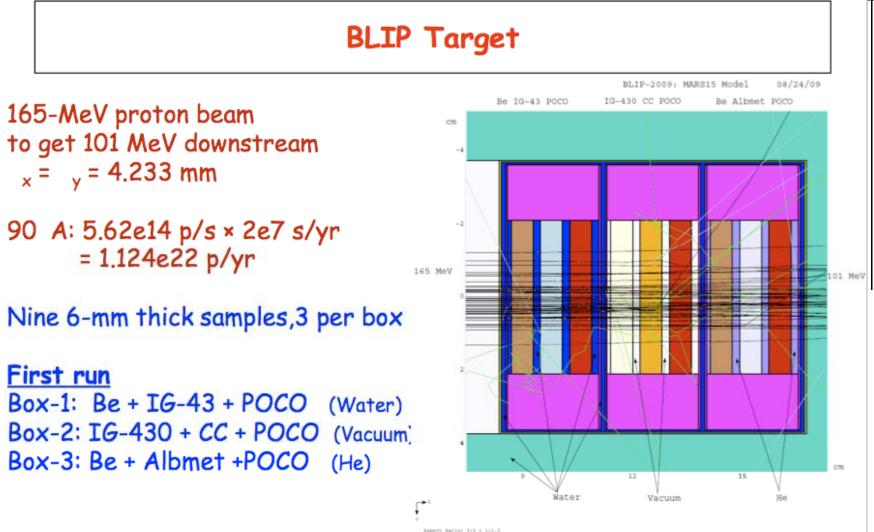
- P-bar consumable target
 - Ran in consumable mode for 2 plus years
 - Change-out time 12 hours maximum
 - Over-heating, oxidation, thermal shock led to damage

Iterative process makes it difficult to isolate the design efforts

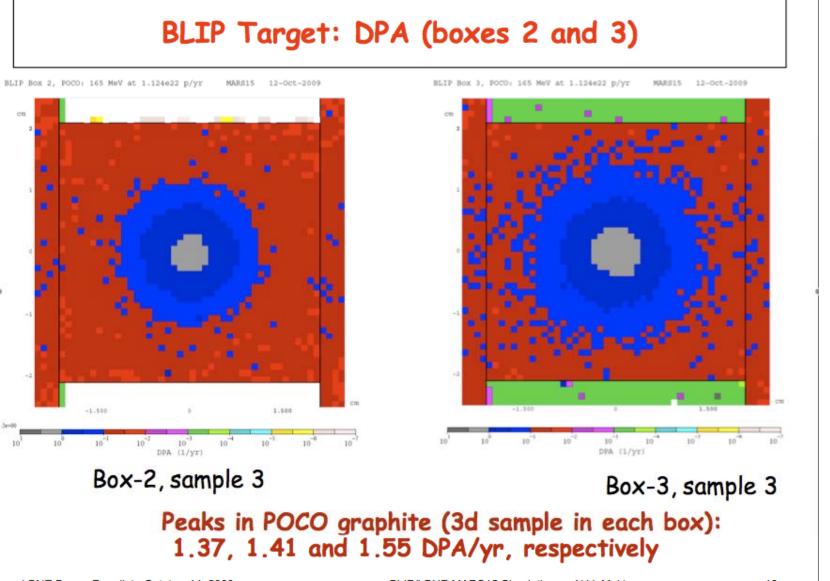
Possible Work Packages

- Water hammer investigation/experiment
- Radiation damage investigation/experiment
- Beryllium thermal shock investigation
- Integrated target/horn conceptual design
- 700 kW target design (using IHEP 2 MW core concept)
- Beam window conceptual design

Water Hammer



- Analysis and simulation to investigate water hammer effect
- Benefit Single phase water cooling
- Who ANL, RAL?
- Status Contract for 4 weeks of Engineering time with ANL in place. Preliminary results indicate that pressure spike is 50 atm (instead of 150 atm)
- Future Design test to confirm?



- Irradiation test at BLIP with new promising materials in vacuum (instead of water bath)
- Investigate radiation damage in candidate materials
- Benefit Longer target lifetime
- Who BNL, ANL?, ORNL?
 - BNL for irradiation and sample characterization
 - ANL/ORNL for correlation of neutron irradiation with high energy proton irradiation
 - ORNL for consult on irradiated properties of graphite?
- Status
 - Meeting with BNL (no funds committed) to design test
 - Contract with ANL for 1 week material scientist
 - Have not contacted ORNL

LBNE Beam, Fermilab, October 14, 2009

BLIP/LBNE MARS15 Simulations - N.V. Mokhov

18

DPA Composition

Physics process contribution (%) at beam axis: z=15 cm (NuMI) and Box 2 POCO graphite (BLIP)

Target	Nuclear	EM elastic	L.E. neutrons	e±
NuMI	50.8	43.3	1.5	4.4
BLIP	43.5	53	3.5	0.02

In summary, DPA/yr = 0.45 (NuMI) and ~1.5 (BLIP) for 4.e20 p/yr and 1.124e22 p/yr, respectively.

Beryllium Thermal Shock

- Analysis to explore the use of Be as a target material
- Benefits
 - Longer target lifetime
 - Elimination of windows and pump/purge system
 - Possible integrated target/horn design
- Who RAL (T2K target engineering team)?
- Status Talking with C. Densham at RAL. No funds committed.

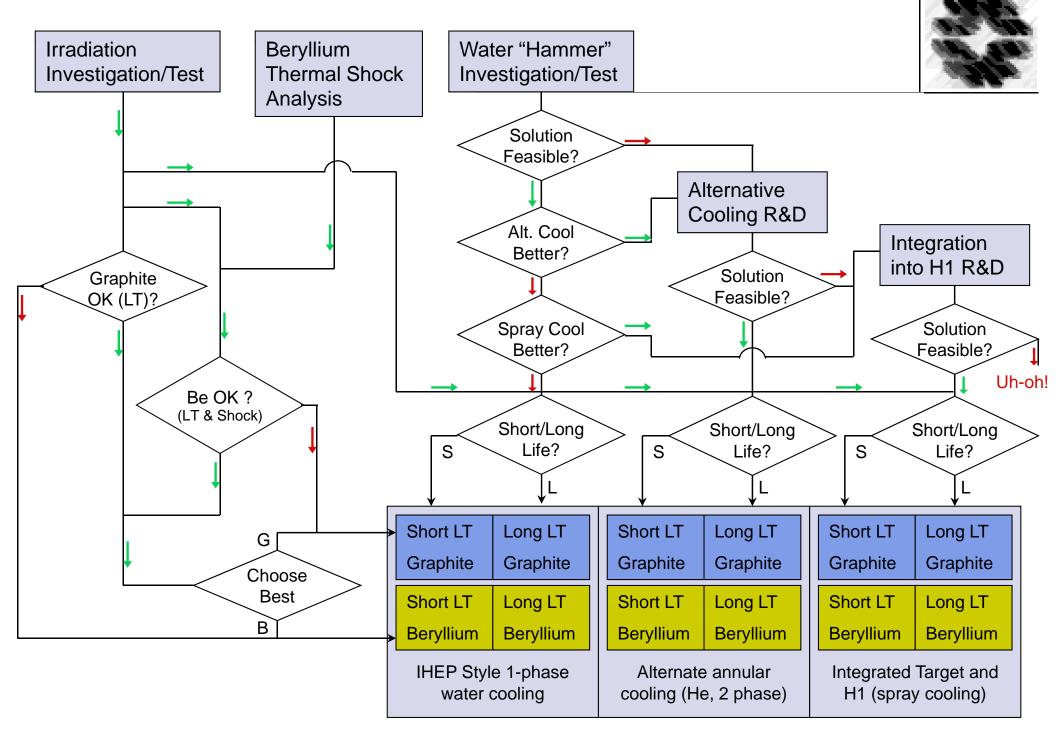
Integrated Target/Horn

- Analysis and conceptual design to use the target as the inner conductor of Horn 1
- Benefit Identifies difficulties with that design solution early.
- Who RAL?, ANL?, IHEP?
- Status No contacts have been initiated for this task yet

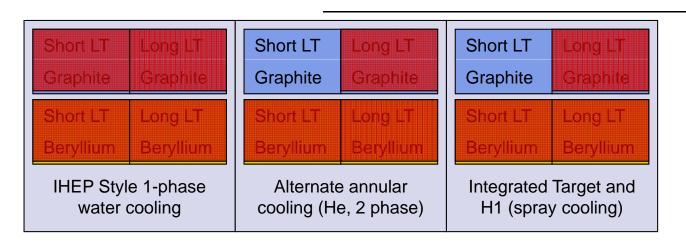
700 kW Target Design

- Using 2 MW target "core" design, complete conceptual design of an LBNE baseline target assembly capable of 700 kW beam power
- Benefits
 - Facilitates baseline cost/schedule estimate
 - Provides experience with the IHEP 2 MW design concept
- Who IHEP, RAL?
- Status Initiating contact on this task (currently IHEP is working on the ME target for NOvA)

2 MW Beam Window


- Analysis and conceptual design of a replaceable beam window capable of 2 MW beam power
- Benefit Facilitates baseline cost/schedule estimate
- Who RAL?, ANL?, IHEP?
- Status No contacts have been initiated for this task yet

Other Target Hall Issues


- Remote stripline connection (ORNL, RAL, ANL)
- Radioactive component handling (ORNL)
- Radiation accelerated corrosion (ANL, BNL)
- Air versus water cooled decay pipe (ANL, ORNL)
- High current horn conceptual design (??)
- Water cooled chase steel shielding (ANL, ORNL)
- Heat pipe target cooling (IHEP)

Path to 2 MW Target Flow Chart

Eventual Solutions?

- Long Lifetimes are preferable (obviously)
- Be only considered if Long Lifetimes are confirmed
- Want to be well on path to defining design concept by CD-1
- Remote Handling issues (and thus civil work) cannot be reasonably estimated until target (and other components) conceptual designs are solidified
- Until then, must assume most conservative solution (most costly and time consuming) and work on these issues in parallel as much as possible!

Looking at it another way...

Option #	Target Mater	Short or Lon Iaifetime	Cooling		nmer		Beryllium Analysis	Alternativ	Integrated Horn (spr cool)		Remote Handling Conceptu Design
1	Graphite	Short	Water, 1 phas	se	Х		Х			Х	Х
2	2 Graphite	Short	Alternative		х		х	х			х
3	Graphite	Short	Spray				Х		х		х
4	Graphite	Long	Water, 1 phas	se	Х	Х	Х			Х	x
5	Graphite	Long	Alternative		Х	Х	Х	х			x
6	Graphite	Long	Spray			х	Х		Х		х
7	Beryllium	Short	Water, 1 phas	se	Х		х			Х	x
8	Beryllium	Short	Alternative		Х		х	х			x
ç	Beryllium	Short	Spray				х		Х		x
10	Beryllium	Long	Water, 1 phas	se	Х	х	х			Х	x
1.	1Beryllium	Long	Alternative		Х	х	х	х			x
12	Beryllium	Long	Spray			х	х		Х		x
	Primary bear window				x	x	x				x

And yet one more way...

ID	Task Name	Duration	Start	Finish	2013 2014 r tr tr tr tr tr tr tr tr
1	2 MW Target Hall Conceptual Design R&D	1220 days	10/12/09	6/13/14	······
2	2 MW Target	491 days	10/12/09	8/29/11	
3	Water Hammer Investigation/Test	208 days	10/12/09	7/28/10	
4	Analysis	88 days	10/12/09	2/10/10	
5	Test	120 days	2/11/10	7/28/10	
6	Irradiation Investigation/Test	491 days	10/12/09	8/29/11	
7	Irradiation Test Prep	321 days	10/12/09	1/3/11	Co to Projoc
8	Irradiation Test Run	50 days	1/4/11	3/14/11	Go to Projec
9	Post-Irradiation Characterization	120 days	3/15/11	8/29/11	
10	Beryllium Target Analysis/R&D	145 days	10/12/09	4/30/10	
11	Alternative Cooling R&D	120 days	2/11/10	7/28/10	Schedules assun
12	Integration with Horn 1 (spray cool)	120 days	5/3/10	10/15/10	
13	Target Option Design Decision	0 days	8/29/11	8/29/11	resources availab
14					
15	700 kW Baseline Target	140 days	6/1/10	12/13/10	(These files were only
17	Horn 1	120 days	4/14/11	9/28/11	
19	Horn 2	120 days	11/9/09	4/23/10	to allow me to investig
21	Horn 3	120 days	11/9/09	4/23/10	timing scenarios. LBN
23	Beam Window	66 days	5/3/10	8/2/10	•
25	Collimator & water cooled shielding	44 days	11/9/09	1/7/10	currently developing t
27	Remote Handling	633 days	10/12/09	3/14/12	
33	Alignment	660 days	10/12/09	4/20/12	comprehensive WBS/
35	Shielding	743 days	11/9/09	9/12/12	7
38	Decay Pipe	226 days	11/9/09	9/20/10	
43	RAW Systems	593 days	11/9/09	2/15/12	
46	RAA Systems	743 days	2/9/10	12/13/12	
49	Underground Facility Excavation	1069 days	11/9/09	12/12/13	
52	Underground Facility Conventional	935 days	5/14/10	12/12/13	
55	Physics Simulation Support	1220 days	10/12/09	6/13/14	
58	Life Safety/ES&H Support	1200 days	10/12/09	5/16/14	
	Task		Milestone	•	
	MW Tarret Path man		Summary	<u> </u>	
roject: late: 10					

Path to 2 MW Target

The scheduling exercises show:

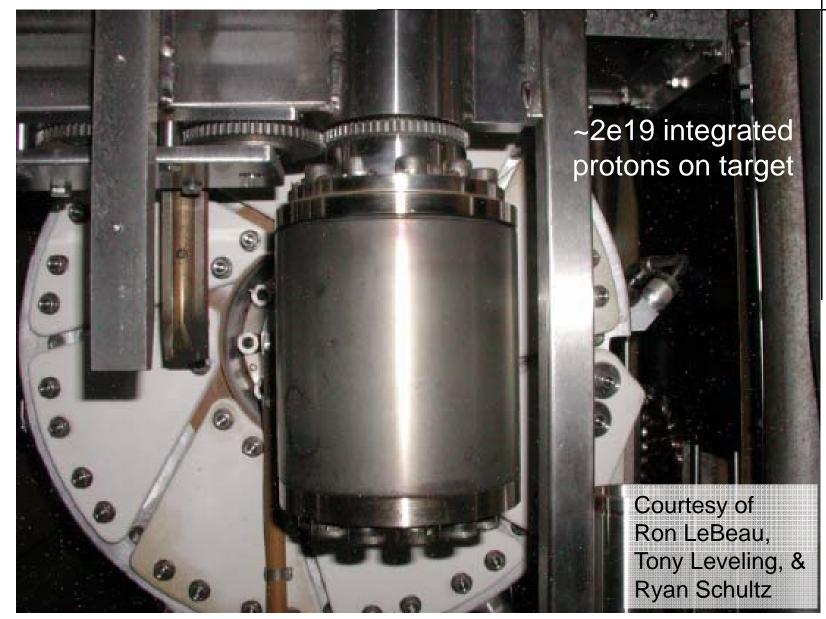
- Although irradiation damage questions may be unanswered, progress on the path to a 2 MW Target may be satisfactory for CD-1 at the end of CY2010?
- Parallel tasks in 2010 will require many resources. Even if "outsourced", significant oversight and support effort is required from FNAL scientists and engineers.
- Dependencies on 2 MW Target choices drive "informed" conceptual design activities until late in 2012. So early "worstcase" assumptions will be used for Civil Construction conceptual design (cost estimates).
 - This risks driving costs and contingencies even higher.
 - This risks "boxing" the component technical designs "in a corner".

Path to 2 MW Target

The scheduling exercises show:

- If the BLIP irradiation test can be pushed up to the 2010 spring run without sacrificing quality, significant gains can be realized.
 - Conceptual Design for 2 MW Target defined by end of CY2010.
 - Conceptual Design of other components 9 months earlier.
 - "Informed" conceptual design activities completed for Target Hall infrastructure and civil construction 9 months earlier.

Path to 2 MW Target


In Conclusion:

- Much work to be done in a short amount of time with limited engineering resources
- Will concentrate on:
 - Irradiation testing of candidate target materials
 - Investigation of "water hammer"
 - Analysis of Be as target material
 - 700 kW baseline design
- We will also pursue:
 - Correlation of neutron to proton radiation damage
 - 2 MW primary beam window
 - Remote handling issues
 - Decay pipe cooling
 - Integrated Target/Horn 1 concept

New P-bar Target

