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Overview

e 2 MW Target Challenges
e Possible Work Packages

e Other Target Related Issues
e Path to 2 MW Target




Beam Pulse

Peak Time Ave

Peak Energy

Time Ave _ _
Duration | Rep Rate Power in | Power Density Density
Facility Status Target Material (us) (Hz)  |Energy (GeV] Beam (MW) (MW/m?) (MJ/m®/pulse)
g’:‘g‘e':fé‘;:]m Under Study] C-C Composite | 2.6 2.5 28 1 4,060 1,630
ESS - short pulse Under Study Hg 1.2 50 1.334 5 2,500 50
ESS - long pulse Under Study Hg 2,000 16.7 1.334 5 2,500 150
EURISOL Under Study Hg 3 50 2.2 4 100,000 2,000
IFMIF Under Study Li CWwW 0.04 (D) 10 100,000 NA
DPARC - Hadron beam | ynder Cons Ni 7E+05 03 50 0.75 7,600 5,300
DPARC - Neutrino bean ynder Study C 5 0.3 50 0.75 83 300
EONORAI Dismantled W 1,000 | 20 0.8 0.8 800 40
LANSCE - Lujan Existing wW 0.25 20 0.8 0.1 350 18
o= MASTESE ynder Study) Pb-Bi 1,000 | 120 0.8 0.8 2,400 20
fei?fajﬁit“yjs"’” Mats | Under Study] Li cw 0.04 (D)) 2 100,000 NA
MiniBoone Existing Be 150 5 8 0.032 120 24
NLC - conventional Under Study W Re 0.26 120 6.2 0.086 334,800 2,790
NLC - undulator Under Study Ti alloy 0.26 120 0.011 0.126 1,110,000 9,200
NuMI Existing C 8.6 0.53 120 0.4 320 600
ANU/NOVA Under Study C 10 0.75 120 0.7 450 600
Project X Under Study C 10 0.7 120 2.3 630 900
Pbar Existing Inconel 600 + E 1.6 0.5 120 0.052 7,650 15,300
RIA Under Study| Li, Be, Hg, W, E cw 1-96 (ptoU 0.4 < 4,000,000 NA
SINQ/Solid Target Existing Pb, SS-clad Cw 0.575 0.72 720 NA
SINQ/MEGAPIE Under Consit Pb-Bi CW 0.575 1 1,000 NA
SNS Under Const Hg 0.7 60 1 2 800 13
US Neutrino Factory |Under Study Hg 0.003 15 24 1 3,800 1,080

From: 1st HP Targetry Workshop in Long Island NY in 2003.




Putting 2 MW Into perspective:




Putting 2 MW Into perspective:

Note: Very early conceptual design stage (for civil
construction estimating purposes)!



2 MW Target Challenges

e Heat removal

e Thermal shock (stress waves)

e Radiation damage

e Oxidation & Rad Accelerated Corrosion
e Spatial constraints

e Residual radiation

e Physics optimization




Heat Removal

e 25-30 kW total energy deposited (IHEP)
e Easy to remove with water

GRAPHITE CYL. e Tritium production

e Hydrogen gas
production

~ e Thermal shock in
water (Water
Hammer)

e 150 atm IHEP
report

AMB. H; 0 TEMP




Heat Removal

2 Phase cooling (bubbles)

2 Phase cooling (heat pipe)

Spray cooling (NuMI horn)

Helium cooling (T2K 750 kW target)




Thermal Shock

Ta-rod after irradiation with 6E18 protons in  Simulation of stress wave propagation in Li
2.4 us pulses of 3E13 at ISOLDE lens (pbar source, Fermilab)

e Sudden expansion of material surrounded by
cooler material creates a sudden local area of
compressive stress

e Stress waves (not shock waves) move through the
target material

e Plastic deformation or cracking can occur



Thermal Shock

e Graphite materials particularly good for thermal
shock (lower Cp, lower CTE, very low E, high
strength at elevated temps)

e Beryllium is not as good, but perhaps survivable

e Pre-loading either in compression is favorable to
reduce the effect

e Shorter “slugs” reduce cumulative effects in the
longitudinal direction

e Remember radiation damage changes properties!
e Must design for accident conditions

Max intensity and smallest spot size

Max rep rate

Off-axis (asymmetric) beam on target




Thermal Shock

'@ o SNS Hg Target
‘ Cavitation problems

200 WNR pulses on test target
. d“}':: .- II-- - —~

B. Riemer, ORNL

Exp |—"————‘—;_—! 1-mier| ._ ¥
| (48



Thermal Shock

e Ongoing work at RAL-Sheffield by
R. Bennett and G. Skoro to study solid
targets for NuFact
Pulsed W wire testing
Benchmark simulation techniques
Show promise of solid W at 4 MW




xggfmy Infroduction Current pulse - wire tests at RAL
' e heffield,

Schematic circuit diagram of the wire test equipment

Test wire,
0.5 mm®

Pulsed Power Supply.

L 0-60 kV; 0-10000 A
Coaxial wires
? 100 ns rise and fall time
800 ns flat top
Repetition rate 50 Hz or
sub-multiples of 2

Tantalum wire - weak
at high temperatures Tungsten - much betterlll

i e S N

S —————— The Finite Element Simulations have been used to
calculate equivalent beam power in a real target and to
extract the corresponding lifetime.




Lifetime/fatigue tests results

Beam power [MW]

80.8 [Max temp = 600K] 3 ;
@ 26.4 [Mhax temp = 1940K] Number of pulses to failure [x10%]

@ 10.1 [J'u'l:ax temp = 1900K] + 2.7 [Max temp = 1800K]
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More than sufficient lifetime demonstrated:

A\ 4

I, IT, TIT -> ‘chronology’.
We have got better with
the tests over time (better
clamping of the wire;
better understanding of
'violin modes' -> better
alignment of the wire)

18U

The af to observe any%ur‘face
damage which might indicate the
presefce of thermal fatigue

1

Results: incmugiag-m 4 =eu

> 10 years for 2cm diameter target

> 20 years for 3cm diameter target

Better at lower temperature!

A 4

Focus now:

Measure stress;

Confirm modelling.
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Radial displacement as a function of energy deposition (0.3 mm diameter wire)

a0 Vibrometer vs. L5—DYNA simulations, wire diameter = 0.3 mm, room temperature M/I["e
I Wire length = 3.9 cm
- 30 kV — single pulse Laser
70
- beam
- ""flb . . ° 4
e """‘t‘b'\"- oL oo * Different wire, different diameter
€ I | : '
S [ Peak displacement value - nice agreement
= 50 < between experiment and simulation
& [
= [
S L Different shape (as a function of time)
s ®r - strongly depends on measurement’s
2T position along the wire
S I -we don't know exactly where we were
= 30 - Measurement — cold end during the measurements _
® LS—DYNA — | = 0 - as can be seen from simulations, a few
I LS—DYNA — | = length /18 mm difference make a big change
20
B In experiment, we see it only here Frequency of radial oscillations
10 | “
! f = 11 MHz (crude estimate) f=11.3 MHz (L5-DYNA)
QO " I Tl o b b e b e e Har‘d "'o measur‘e i"' for‘ such a "'iny wir‘e!
0 0.5 1 1.5 2 2.5 3 3.5 !

time (us) Much better for 0.5 mm diameter wire (next Slide)




Radiation Damage

e Displacements in metal
crystal lattice e
o Embrittlement
e Creep
o Swelling

e Damage to
organics/plastics

e Cross-linking (stiffens,
Increase properties) J—

e Scission (disintegrate,
decrease properties)

Molecular Damage Simulations of peak
damage state in iron cascades at 100K.

R. E. Stoller, ORNL.



Radiation Damage

e Tungsten cylinders
irradiated with 800
MeV protons and
compressed to 20%
strain at RT.

e A) Before irradiation
e B) After 3.2 dpa

o C) After 14.9 dpa

e D) After 23.3 dpa

(c) o (d)
S. A. Malloy, et al., Journal of Nuclear
Material, 2005. (LANSCE irradiations)



Radiation Damage

e Atom displacement causes changes in
material properties

e Not much literature on high energy proton
irradiation of materials

e Lots of information on low energy neutron Pictures
irradiation (nuclear reactors) from N.

Simos talk



Radiation Damage

e Tests at BLIP (BNL) by N. Simos indicate total
failure of graphite and c-c at about 102}
protons/cm?

e If correct, LBNE target lifetime would be 3-4
months, necessitating quick change-out
mechanisms

e NT-02 showed reduction in yield more or less
consistent with the BNL test

e 1G-430 (nuclear grade) may be promising

e Metals such as Be and Ti also are affected but not
as catastrophically for the same fluence (windows,
target casing, not just for target)
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Figure 2 : Effect of irrac_iiation on poor quality graphite.  Kosiba and Dienes USAEC F]gure 3a :Oxidation of Poco AXF-5Q in ﬂowing air. 7
RID-7565 Ppart 1) 1959.4
e Oxidation reaction is very fast for carbon at high temperatures
e Need sealed target jacket with beam windows and
pump/purge system
Ber |||um avoids thisf) Lance Snead and Tim Burchell
* y . Oak Ridge National Laboratory



Radiation Accelerated Corrosion

e Al 6061 samples
displayed significant
localized corrosion
after 3,600 Mrad
exposure.

e Enhanced tritium et |40 um L
uptake and R
permeation throUQN  peed 2 weeks to sanated water vapor at 200 and
austenitic Stainless """

Steel (300 series)

R.L. Sindelar, et al., Materials
Characterization 43:147-157
(1999).



Radiation Accelerated Corrosion

e MINIBOONE 25 m
absorber HS steel

fallure (hydrogen
embrittlement from
accelerated corrosion).

e NuMI target chase
air handling
condensate with pH
of 2. ‘_

e NuMI decay pipe
window concerns.

R
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Radiation Accelerated Corrosion

e Photograph of NuMI decay pipe US window showing
corroded spot corresponding to beam spot



Spatial Constraints

e Low energy optics mean target must be
iInserted in throat of horn

e Little room for cooling (greater water hammer
effect)

e Mount target to horn?

e Integrate target into horn inner conductor (Be
target material)?

e If so, target design tied much more closely to
horn design (high current, magnetic forces)




Residual Radiation

Measured dose rates for
Horn 1 water line repair

Doserate Doserate
@ 1 foot On Contact

Point  (mr/hour) (mr/hour)

1 |7350007% 75000

2 40000 | 75000

3 | 35000 | 80000

e Dose rates for 2 MW beam components estimated
at 300-400 Rad/hr

e Systems for component change-out and repair
must be developed (IE Remote Handling)

e Operations activities must be integrated into the
conceptual design of target components



Survivability I1s relative o
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Physics Optimization

o
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¢> Physics Simulation

Target and Horn < Energy Deposition
Design Simulation

lterative process makes it difficult to isolate
the design efforts



Possible Work Packages

e Water hammer investigation/experiment

e Radiation damage
Investigation/experiment

e Beryllium thermal shock investigation
e Integrated target/horn conceptual design

e /00 kW target design (using IHEP 2 MW
core concept)

e Beam window conceptual design




Water Hammer

e Analysis and simulation to investigate water
hammer effect

e Benefit - Single phase water cooling
e Who - ANL, RAL?

e Status - Contract for 4 weeks of Engineering time
with ANL in place. Preliminary results indicate that
pressure spike is 50 atm (instead of 150 atm)

e Future - Design test to confirm?




Radiation Damage

e Irradiation test at BLIP with new promising
materials in vacuum (instead of water bath)

e Investigate radiation damage in candidate
materials

e Benefit - Longer target lifetime
e Who - BNL, ANL?, ORNL?

BNL for irradiation and sample characterization

ANL/ORNL for correlation of neutron irradiation with high
energy proton irradiation

ORNL for consult on irradiated properties of graphite?

e Status
Meeting with BNL (no funds committed) to design test
Contract with ANL for 1 week material scientist
Have not contacted ORNL




Radiation Damage

BLIP Target

165-MeV proton beam
to get 101 MeV downstream
x= y=4.233mm

90 A:5.62el14 p/s x 2e7 s/yr
= 1.124e22 p/yr

L] =

[] 1] -
[ B -
e =

Nine 6-mm thick samples,3 per box

I

First run

Box-1: Be + I6-43 + POCO (Water)
Box-2: I6-430 + CC + POCO (Vacuum
Box-3: Be + Albmet +POCO (He)

LBNE Beam, Fermilab, October 14, 2009 BLIP/LENE MARS15 Simulations - M.V, Mokhov 16



Radiation Damage

BLIP Target: DPA (boxes 2 and 3)

L I T I e I

Box-2, sample 3 Box-3, sample 3

Peaks in POCO graphite (3d sample in each box):
1.37, 1.41 and 1.55 DPA/yr, respectively

- LBNE Beam, Fermilab, October 14, 2009 BLIP/LBNE MARS15 Simulations - N.V. Mokhov 18




Radiation Damage

DPA Composition

Physics process contribution (%) at beam axis:
z=15 cm (NuMT) and Box 2 POCO graphite (BLIP)

—mlm—

NuMI 50.8 43.3
BLIP 43.5 53 3.5 0.02

In summary, DPA/yr = 0.45 (NuMI) and ~1.5 (BLIP)
for 4.e20 p/yr and 1.124e22 p/yr, respectively.

LENE Beam, Fermilab, October 14, 2009 BLIP/LENE MARS15 Simulations - N.V. Mokhov 20



Beryllium Thermal Shock

e Analysis to explore the use of Be as a target
material

e Benefits
Longer target lifetime
Elimination of windows and pump/purge system
Possible integrated target/horn design

e Who - RAL (T2K target engineering team)?

e Status - Talking with C. Densham at RAL. No
funds committed.




Integrated Target/Horn

e Analysis and conceptual design to use the target
as the inner conductor of Horn 1

e Benefit - Identifies difficulties with that design
solution early.

e Who - RAL?, ANL?, IHEP?

e Status - No contacts have been initiated for this
task yet




/00 KW Target Design

e Using 2 MW target “core” design, complete
conceptual design of an LBNE baseline target
assembly capable of 700 kW beam power

e Benefits
Facilitates baseline cost/schedule estimate
Provides experience with the IHEP 2 MW design
concept

e Who - IHEP, RAL?

e Status - Initiating contact on this task
(currently IHEP is working on the ME target
for NOVA)




2 MW Beam Window

e Analysis and conceptual design of a replaceable
beam window capable of 2 MW beam power

e Benefit - Faclilitates baseline cost/schedule
estimate

e Who - RAL?, ANL?, IHEP?

e Status - No contacts have been initiated for this
task yet




Other Target Hall Issues

e Remote stripline connection (ORNL, RAL, ANL)
e Radioactive component handling (ORNL)

e Radiation accelerated corrosion (ANL, BNL)

e Air versus water cooled decay pipe (ANL, ORNL)
e High current horn conceptual design (??)

e Water cooled chase steel shielding (ANL, ORNL)
e Heat pipe target cooling (IHEP)




Path to 2 MW Target Flow Chart

Water “Hammer”
Investigation/Test

o
W

Irradiation Beryllium
Investigation/Test Thermal Shock
1 Analysis

—> 4R
—

Graphite

OK (LT)?

Be OK ?

(LT & Shock)

Solution
Feasible?

Alt. Cool
Better?

Spray Cool
Better?

Alternative
Cooling R&D

Solution
Feasible?

Integration
into H1 R&D

Solution
Feasible?

Uh-oh!

Short/Long

Short/Long

Short/Long

Life?

Y

Life?

Y

Life?

Y

Short LT | Long LT Short LT | Long LT Short LT | Long LT
Graphite | Graphite Graphite | Graphite Graphite | Graphite
Short LT | Long LT Short LT | Long LT Short LT | Long LT
Beryllium | Beryllium Beryllium | Beryllium Beryllium | Beryllium

IHEP Style 1-phase
water cooling

Alternate annular
cooling (He, 2 phase)

Integrated Target and
H1 (spray cooling)




Eventual Solutions?

Short LT Short LT
Graphite Graphite

IHEP Style 1-phase Alternate annular Integrated Target and
water cooling cooling (He, 2 phase) H1 (spray cooling)

e Long Lifetimes are preferable (obviously)
e Be only considered if Long Lifetimes are confirmed
e Want to be well on path to defining design concept by CD-1

e Remote Handling issues (and thus civil work) cannot be
reasonably estimated until target (and other components)
conceptual designs are solidified

e Until then, must assume most conservative solution (most
costly and time consuming) and work on these issues in
parallel as much as possible!



Looking at It another way...

o
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Remote
Water Integrate{700 kW |Handling
Short or Lon Hammer |IrradiatiofBeryllium|AlternativiHorn (spr{IHEP TargConceptu
Option # |Target Mateijiafetime Cooling Inv/Test [Inv/Test |Analysis |Cooling [cool) Design |Design
1Graphite Short Water, 1 phase X X X X
2|Graphite Short Alternative X X X X
3 Graphite Short Spray X X X
AGraphite Long Water, 1 phage X X X X X
5Graphite Long Alternative X X X X X
6|Graphite Long Spray X X X X
7|Beryllium Short Water, 1 phagse X X X X
8|Beryllium Short Alternative X X X X
9Beryllium Short Spray X X X
10Beryllium Long Water, 1 phagse X X X X X
11Beryllium Long Alternative X X X X X
1Z4Beryllium Long Spray X X X X
Primary beatr

window X X X X




And yet one more way...

|8} Task Mamia

1 2 MW Target Hall Conceptual Design R&D
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Go to Project Files

Schedules assume infinite
resources available!

(These files were only developed
to allow me to investigate various
timing scenarios. LBNE is
currently developing the
comprehensive WBS/RLYS)

|
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Path to 2 MW Target

o
W

The scheduling exercises show:

Although irradiation damage questions may be unanswered,
progress on the path to a 2 MW Target may be satisfactory for
CD-1 at the end of CY20107?

Parallel tasks in 2010 will require many resources. Even if “out-
sourced”, significant oversight and support effort is required from
FNAL scientists and engineers.

Dependencies on 2 MW Target choices drive “informed”

conceptl |9| rlncm«n Qr‘fl\llflac tintil Iata in ’)ﬂ'l ’) Qn QQI"'\I harnret-
U1 |JLUIu UL Il UII CALUVLIVILILCO UTILI TCALG 11 y VVUI OL

case” assumptions will be used for Civil Construction conceptual
design (cost estimates).

This risks driving costs and contingencies even higher.

This risks “boxing” the component technical designs “in a corner”.



Path to 2 MW Target

The scheduling exercises show:

If the BLIP irradiation test can be pushed up to the 2010
spring run without sacrificing quality, significant gains can
be realized.

Conceptual Design for 2 MW Target defined by end of
CY2010.

Conceptual Design of other components 9 months earlier.

“Informed” conceptual design activities completed for Target
Hall infrastructure and civil construction 9 months eatrlier.




Path to 2 MW Target

In Conclusion:

e Much work to be done in a short amount of time with limited
engineering resources

e Will concentrate on:

Irradiation testing of candidate target materials

Investigation of “water hammer”

Analysis of Be as target material

700 kW baseline design

e will also pursue:
Correlation of neutron to proton radiation damage
2 MW primary beam window
Remote handling issues
Decay pipe cooling
Integrated Target/Horn 1 concept

....Oé....



New P-bar Target
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