

The MERcury Intense Target Experiment – or nTOF11

20m/sec Hg jet achieved on February 14, 2007 MERIT Collaboration – ORNL test setup I. Efthymiopoulos – CERN, AB Dept.

(for the MERIT collaboration)

MUTAC Review BNL – April 18, 2007

- Reminder: scientific goals & layout of the experiment
- Schedule
- Construction of experimental components
 - Solenoid & Hg loop
 - MIT combined tests → Van Graves's talk
 - Cryogenics
- Activities at CERN
- Safety
- Beam issues & particle detectors

A proof-of-principle test of a target station suitable for a Neutrino Factory or Muon Collider source using a 24-GeV proton beam incident on a target consisting of a free mercury jet that is inside a 15-T capture solenoid magnet.

Proposal submitted to INTC – May 2004 Experiment approved as **nTOF11**

Participating Institutes

- BNL, MIT, ORNL, Princeton University
- KEK
- CERN, RAL

Spokespersons

H. Kirk (BNL), K. McDonald (Princeton Univ.)

Target

- I-cm diameter Hg jet, jet velocity ≅ 20m/s
- Hg jet/proton beam configuration:
 - Hg-jet ↔ solenoid axis = 33 mrad
 - proton beam ↔ Hg-jet axis = 67 mrad
 - beam ↔ Hg-jet interaction length = ~30cm (2 λ_{I})

Proton beam

- 24(14) GeV/c extracted from PS
 - Max. intensity 3 × 10¹³ protons/pulse
 - Beam spot r≤ 1.2 mm rms
 - Variable pulse length 0.134 ÷ 500 μsec
 - ~100 high-intensity pulses
 - 3×10^{15} protons on target in total (radiation limit)

Study MHD offacts on Haliat with 2.

MERIT Experiment – Scientific Goals

6

Jet dispersal at t=100µs with magnetic field varying from 0 to 10 Tesla

- Study jet disruption (cavitation?) by varying the PS spill structure **MERIT: 180 J/g**
 - 28TP@24GeV protons
 - 1cm diam. Hg-jet

Reminder: scientific goals & layout of the experiment

Schedule

- Construction of experimental components
 - Solenoid & Hg loop
 - MIT combined tests → Van Graves's talk
 - Cryogenics
- Activities at CERN
- Safety
 - Beam & particle detectors

Since MUTAC'06 significant progress has been made in all aspects of the experiment

- Construction is basically completed for all experiment's components
- Delays have been accumulated due to technical problems:

Milestone	MUTAC'06	Update
DVB delivery	Sep.'06	Nov.'06
Hg-loop test @ ORNL	Oct.'06	Completed Feb.'07
Solenoid test @ MIT	Mar.'06	
Combined test @ MIT	Dec.'06	Mar.'07
Shipment to CERN	Dec.'06	14 Mar.'07

- But thanks to the fast shipment of components (air-cargo) some time was saved
- We are still on time for the installation, but we have lost a big part of our contingency

The 2007 CERN Accelerator Schedule

MERIT Experiment – Schedule

- Reminder: scientific goals & layout of the experiment
- Schedule
- Construction of experimental components
 - Solenoid & Hg loop
 - MIT combined tests → Van Graves's talk
 - Cryogenics
- Activities at CERN
- Safety
- Beam & particle detectors

- Required flow: 1.57 lt/s
- Mercury inventory: ~23 lt
- Piston velocity : 3.0 cm/s
- Hg jet duration of 12s
- Drive cylinders:
 - 15-cm diam
 - 45 lt/min
 - 20 MPa (200 bar)

Geneva's jet d'eau April 2007

Hg-loop assembled - during water tests @ORNL

I.Efthymiopoulos, CERN

Hg-nozzle

hydraulic pump unit

80 us/frame, 16 frames pulsed NIR light SMD camera

first test at MIT in March 2006 15T magnetic field reached !

Details & results in Van's talk...

Arrival at CERN on Monday March 19th

Leaving MIT on Wednesday March 14th

{solenoid, Hg-loop, optical diagnostics}

- Hg volume was send to CERN separately
 - 23-It in 11 drums transported according to safety rules for chemically hazardous material

- Process control implemented
- Remote operation from control room tested
- Interlock with solenoid power supply defined

- Installation in build.180 for surface tests completed
 - System fully commissioned with dummy load

- Reminder: scientific goals & layout of the experiment
- Schedule
- Construction of experimental components
 - Solenoid & Hg loop
 - MIT combined tests → Van Graves's talk
 - Cryogenics
- Activities at CERN
- Safety
 - Beam & particle detectors

Due to the leaks in the solenoid observed during the MIT tests, it was decided to proceed with the full commissioning of the solenoid and the cryogenics at surface before installation in the tunnel

Status

- CERN Safety inspection for the solenoid done safety valves set
- First cool-down started on Friday April 13
 - No leaks at warm observed

However

- Leaks at cold were observed when filled with LN
- Further tests ongoing to diagnose the exact location of the leaks
 - we do suspect failure of the insulating silicon-rubber material
 - a possible solution is under consideration

Detection and correction of leaks is on the critical path that may have implications for the installation schedule

- The access shaft was opened on November 22, 2006
- It can remain open even when PS starts with beam
 - but not during the whole run

- Recuperated from the old SPS West Area extraction
- "pulsed" mode: 7kA / 30 min ; 5MW
- Installed (along with its transformer) in bat 193
- Refurbished to convert it to PS standards and controls

AC transfo outside build.193

PS in build.193

April 2007

I.Efthymiopoulos, CERN

Auxiliary works:

- The **power supply** work is advancing well
 - Controls, interlocks and timing issues defined
 - Work on AC part is advancing as scheduled
- Installation of services (electricity, networking, etc.) is ongoing
- Installation of the cryogenics line completed as well as the preparation for the dewar platform on the surface
- Platforms and pedestals for the crates in the TT2 tunnel done
- ODH monitoring installation completed
- Access doors and interlocks defined and work ongoing

Significant progress over the last months, works proceed as scheduled

- Reminder: scientific goals & layout of the experiment
- Schedule
- Construction of experimental components
 - Solenoid & Hg loop
 - MIT combined tests → Van Graves's talk
 - Cryogenics
- Activities at CERN
- Safety
 - Beam & particle detectors

- 1. Preliminary hearings with safety officials at CERN before the proposal submission and approval of the experiment
 - 2. Safety reviews of the major sub-systems of the experiment, in time with their production
 - Cryostat and cryogenics February 3, 2006
 - Hg-system **June 20, 2006**
 - 3. Safety pre-installation review March 30, 2007
 - Experience from the combined tests & MIT
 - 4. Safety inspections in-situ
 - Transport, installation, Hg-handling, cryogenics, electrical safety, etc.
 - Access, interlocks, monitoring systems, etc.

Solenoid & Cryogenics Review

http://indico.cern.ch/conferenceDisplay.py?confld=673

	MERIT safety review		Friday 03 February 2006 from 09:00 to 15:30 at CERN (<i>SALLE A (61-1- 017)</i>) chaired by: Ilias Efthymiopoulos (CERN) I. Efthymiopoulos
Description:	MERIT solenoid and cryogenics s	ystem is reviewed. Participation upon invitation.	
			Friday 03 February 2006
Friday 03 F	ebruary 2006		top↑
09:00-> <i>09:30</i> Description:	Introduction		
09:00 Introductio	n (20') (🖮 Slides 🛄)		llias Efthymiopoulos (CERN) , Adrian Fabich (CERN)
09:20 Discussion	n (10')		
09:30->10:40	Solenoid		
09:30 Solenoid o	description (40') (Paper 🕮)		Peter Titus (MIT)
10:10 Discussion	n (30°)	brook	aı
11:00->12:10 Description:	Cryogenics system	bicut	
11:00 Descriptio	n (40') (迹 Slides 🚺 🔛)		Friedrich Haug (CERN)
11:40 Discussion	n (30')		all
12:10		lunch	
13:15-> <i>14:15</i> Description:	Closed/open session	*	
13:15 discussion	1 (1h00')		reviewers
14:30-> <i>15:30</i> Description:	feedback session		

http://indico.cern.ch/conferenceDisplay.py?confld=1785

and a	"MERIT safety review of the mercury sys	stem" Monday 19 June 2006 from 09:00 to 17:00 at CERN (SALLE B (61-1-009))
Description	The design, construction, operation, transport & decom	missioning of the mercury loop system will be reviewed.
		Monday 19 June 2006
Monday	y 19 June 2006	top↑
09:00	Introduction (15') presentation	Ilias Efthymiopoulos (CERN)
09:15	Discussion (15')	
09:30	Layout and construction of the Hg system (30') (Side presentation	es) Van Graves (<i>ORNL</i>)
10:00	Discussion (30')	
10:30	break	
11:00	Operation and handling (30') (Sides) presentation	Phil Spampinato (ORNL)
11:30	Discussion (30')	
12:15	lunch ()	
13:30	Transport and decomissioning (30') (Slides) presentation	Van Graves (ORNL)
14:00	Discussion (30')	
14:30	Closed session (1h00')	review panel
15:30	coffee	
16:00	Discussion - feedback (1h00')	

http://indico.cern.ch/conferenceDisplay.py?confld=13152

		MERIT Pre-installation revi	Friday 30 March 2007 from 10:30 to 16:05 at CERN (<u>SALLE J.B.ADAMS</u> ew (<u>864-2-B14</u>)) chaired by: Ilias Efthymiopoulos (CERN), Adrian Fabich (CERN)
C	Descrip	tion: Review the installation steps of the M Present the experience and results fr the operation of the experiment at CE	ERIT experiment with emphasis on safety matters. om the combined tests at MIT. Go through the plans for RN.
P	articip	nts: Astone, A; Bernard, Y; Clement, J; Kirk, H; Lazzaroni, M; Lindell, k	M; Delille, B; Efthymiopoulos, I; Fabich, A; Gulley, (; Mc donald, K; Otto, T; Prodon, S; Roy, G
			Friday 30 March 2007
Fr	iday	30 March 2007	top↑
	10:30	Welcome (05') (🚎 des 🛛) 🔁 🔛	Ilias Efthymiopoulos (CERN)
	10:35	Status of the Experiment (15') (sees)	Adrian Fabich (CERN)
		Brief overview of the experiment focusing meeting. Go through the installation and co	on the items that won't be discussed in detail during the mmissioning schedule.
	10:50	Mercury handling operations (30') (Harold Kirk (Brookhaven National Laboratory (BNL))
		Desrciption of the mercry system - "as bui Mercury loading and unloading operations	It". Results from standalone and combined tests at MIT. Plans at CERN.
	11:20	Solenoid - experience from the tests at MIT (20) (Kirk Mc Donald (Princeton University)
		Present the operation and experience from	n the standalone and combined tests at MIT.
	11:40	Discussion (25')	
	14:30	Installation plans (30') (🖼 es 🌖 🔂 🔮	Michael Lazzaroni
		Go through the installation procedure fores the shaft, manipulations inside the tunnels	seen. Address the issues of lowering of material from etc.
	15:00	Cryogenics installation and operation (20') (s	es; molanfamation) (tbc)
		Update on the cryogenics installation and	operation.
	15:20	Discussion (40')	

Chairman

Ghislain Roy (CERN-AB/DSO)

Mercury experts & Chemical Safety

- Friedrich Groeschel (PSI)
- Bernie Riemer (ORNL)
- Jonathan Gulley (CERN/SC)

Radiation protection (CERN-SC/RP)

- Marco Silari
- Thomas Otto
- Pierre Carbonez

Mechanical safety (CERN-SC/GS)

- Benoit Delille
- Andrea Astone

General Safety (CERN-SC/GS)

- Bruno Pichler
- Karl Gunnar Lindell
- Ralf Trant

Fire protection (CERN-SC/GS)

Fabio Corsanego

MERIT Presentations in:

AB Installation Committee (ABIC)

- interface with PS/SPS and CERN services teams
 - → permission to work in TT2/TT2A tunnel during PS/SPS operation

AB Safety Committee (ABSC)

 Presented safety structure of the experiment and proposal for review program of various components

AB Technical Committee (ATC)

- discussed status of the experiment, schedule, AB & CERN resources, safety...
- Radiation Protection Committee (RPC)
 - Presentation to French and Swiss authorities; authorization to run obtained

ISIEC form for the experiment submitted

Ardian Fabich (CERN) nominated as GLIMOS (Group Liaison In Matters of Safety)

A very good and continuous contact with the CERN safety officials has been established

The "safety file" for MERIT sets the example on how safety should be handled for experiments at CERN

- At the end of the run the experiment will remain in place for a cool-down time until the machine shutdown (November '07)
 - The Hg will be emptied and stored in the flasks in TT2 tunnel
- During the 2008 shutdown the experiment will be removed from the tunnel
 - All equipment will be stored at CERN for one year cool down
 - At the end of that period radioactivity will be minimal for all components which allows classifying them as "exempted" packages for shipment
 - Transport back to US is defined & agreed with CERN officials
 - Hg volume : transported by air-cargo using the existing packaging
 - radioactivity will be minimal and chemical hazards precede
 - Hg loop: transported by air-cargo
 - Classified as "mercury wet" material (< 1lt of Hg)
 - Solenoid & other heavy material will be packaged and send separately

- Reminder: scientific goals & layout of the experiment
- Schedule
- Construction of experimental components
 - Solenoid & Hg loop
 - MIT combined tests → Van Graves's talk
 - Cryogenics
- Activities at CERN
- Safety
 - Beam & particle detectors

Beam setup for cavitation studies

Operate the PS machine in harmonic-16

Fill the machine in bunch pairs

Similar requirements as for the HI CNGS beams
 I.Efthymiopoulos, CERN

General approach

- Repeat each parameter configuration twice
- Increase intensity gradually (up to 2.5*10¹³ protons/pulse)
- Do basic program, MHD first
- Each proton pulse configuration is performed at B=15 T (solenoid) and B=0 T (horn)
- Consider effort for PS operation to change settings

Schedule

- 1. Beam setup understand beam optics, parameters and tuning
- 2. MHD studies (i.e. magnetic field scans)
- 3. Beam position scan along the target
- 4. Pulse structure studies
 - 1. Cavitation
- 5. Spot size sensibility
- 6. Intensity ; aim to >3.2 TP !!!
- Operation scenarios with real time estimates are being worked out

Beam profile measurement

- MTV screens
 - "almost" readily available
 - Minor effort / minimum budget

Beam intensity

Beam transformer at beginning of line and just upstream of expriment

What is the ^{BTV} system ?

Transverse beam parameters

- Position & spot size \rightarrow MTV screens
- Direction $\rightarrow 2 \times MTV$ screens & collimator
- Divergence \rightarrow not a direct measurement
 - Rely on beam simulations
 - Estimate from spot size monitors

Longitudinal beam parameters

- Measured by pick-ups in the PS & TT2 line upstream of MERIT
 - Logging of all beam parameters and instrumentation possible

- Measure particle production in "pump-probe" method for cavitation studies: i.e. detect particle production per bunch
- Place detectors around the target at various locations
 - Detectors: pCVD diamonds, pin diodes, ACEM detectors
- Monitor the beam-target interaction

Diamond detectors

- Same principle as a PIN-diode, with reverse bias voltage and separation of electron-hole pairs, created by traversing MIPs.
- Previously tested in conditions similar to that of MERIT with good results.
- Will be used at LHC for the fast beam abort system around the experiments

ACEM

- Aluminum Cathode Electron Multiplier

 Built like a photo multiplier, but with an aluminum foil functioning as a secondary electron emitter as cathode. See [1].
- Used in PS & PSB machines as beam loss monitors

- The experiment is in good track. Construction is completed and results from the tests so far are very encouraging.
 - The important milestone of combined tests at MIT was met in March'07
- The focus now moves to CERN with the installation and commissioning activities
 - Despite of the delays and technical problems, we remain on time for the July run with beam (3rd - 17th) but with very limited contingency
 - Correcting the leaks of the solenoid remains critical and will focus our attention in the coming week
- Safety has been handled very seriously; continuous contact and collaboration with CERN officials has been established
 - Several reviews organized no show stopper identified
 - Our primary goal remains to perform a successful and <u>safe</u> experiment

We are looking forward for an exciting summer at CERN with good physics results to verify the liquid target concept

Backup slides

- Release of LN2 gas (through a heat exchanger) during the cooling down of the magnet to TT10 tunnel was authorized
 - ~ 200 It of LN2 ; ~1 It activated remnant from previous fill
- TT10 is the only ventilated tunnel close to the experiment
 - ~27'000 m³/h flow
 - release near bat 806

MERIT operation:

- ~280 m³ LN2/ h
- Request to have a cool down time between refills to reduce radiation levels
 - 3.5×10^{15} protons $\rightarrow 4.7$ GBq, 1% of total TT10 activation

eutrino Fac

- Radiation issues have been considered for the components of the experiment
- Absorbed and residual doses within limits

MARS Simulations S. Striganov – FNAL

			·			-
	Absorbed	Residual Dose	Residual	Residual Dose	Residual	
	Dose	Rate – at Shut	Dose Rate	Rate – 100 Hrs	Dose Rate –	
Component		Down	– at Shut	Cool Down	100 Hrs	
component	15	15	Down	15	Cool Down	
	$(Gray/3*10^{15})$	$(mSv/h 3*10^{15})$		$(mSv/h 3*10^{15})$		
	protons)	protons/30day)	(mrem/h)	protons/30day)	(mrem/h)	
Equipment in solenoid bore	$10^4 - 10^6$	1	100	-	-	
Equipment in secondary enclosure	$10^2 - 10^4$	-	-	-	-	
Syringe Pump	-	$10^{-2} - 10^{-3}$	1.0 - 0.1	-	-	
Top of secondary enclosure	-	$10^{-2} - 10^{-4}$	1.0 - 0.01	-	-	
Hg vapor monitor (top of enclosure)	14.0 (<5-10 krad for electronics)	0.95	95.0	<2.70 x 10 ⁻³	<0.27	
Hydraulic fluid	125	0.023	2.30	<1.13 x 10 ⁻⁴	< 0.01	
Ventilation filter in secondary encl. (1)	505	1.55	155.0	<9.70 x 10 ⁻⁴	<0.09	
Mercury	$10^{1} - 10^{2}$	$10^{-1} - 10^{-2}$	10.0	30 x 10 ⁻³ (2)	3.0 (2) (3)	.
 (1) Pure carbon (2) 1 day of de CERN Tec (3) After 1 month 	n material used fo cay at 1 meter di hnical Note CER nth, dose rate at	or calculation; imp stance; M. Magistr N-SC-2005-049-R 1 meter distance is	regnated sulfu ris and M. Sila P-TN, June 1 0.1 mrem/h.	ir not included. ari, EDMS No. 60 6, 2005.	1754,	

MERIT			Home Navigator	Search Help EDMS Site Logi
scat Set Saarch Lo	Description: Eq. Code: EDMS Id: AB-00 Responsible: Adria	01141 v.0 n FABICH	Displayed Compact listing Extended listing Hide obsolete	Sorted by Defau Numbe <u>Creation Dat</u>
MERIT Experiment	Documents in this node: 9		<u>Show obsolete</u>	Alvanced
Management				
General Planning General Services	626963 v.1	Handling of irradiated mercury from a Hg-jet test experin	nent	Released
Proton Beam	<u>Doc. page</u>	IDto2004-14m <u>pdf</u> (102 кb)		
Solenoid Mercury Loop	697850 v.1	Proposed use of mercury at CERN in the Experiment TT2/	A (chemical safety)	Released
Cryogenics	<u>Doc. page</u>	memoUseOfMercuryTT2A pdf (25 Kb)		
 Optical Diagnostics 	697857 v.1	Release of N2 from nTOF11		Released
Particle Detectors Simulation	<u>Doc. page</u>	IDto2005-05m <u>pdf</u> (54 кь)		
Safety	697860 v.1	Radiological consequences of CNGS beam tuning for TT2/	4	Released
Installation	<u>Doc. page</u>	IDto2004-30m <u>pdf</u> (87 кь) 📐		-
	698095 v.1	Comments from CERN's Safety Commission concerning (INSTALLATIONS for MERIT	CRYOGENIC	Released
	<u>Doc. page</u>	memo_cryo_guidelines_safety pdf (зэкь)		
	698199 v.1	Ventilation issues for Proposal INTC-P-186		Released
	<u>Doc. page</u>	Safety_Max_protons pdf (58 Kb)		•
	700153 v.1	nTOF 11 / TT2A CRYOGENIC INSTALLATIONS		Released
	<u>Doc. page</u>	nTof11 <u>pdf</u> (зекь)		
	700178 v.1	Induced radioactivity in the target and solenoid of the TT experiment (nToF11)	2A mercury target	Released
	Doc. page	ActivationCalculations pdf (170 Kb)		
	754444 v.1	Conclusions of the Safety Review of MERIT mercury syste	em	In Work
	Doc. page	MERIT_HgLoopReview_reportJun06 pdf (27 Kb) doc (64 Kb)		

Access and interlock

- Access in TT2/TT2A tunnels possible when PS/SPS in operation
 - Limited access as in other exp. areas
 - Card reader for personnel access
 - Personal dosimeters
 - Dose plan in preparation
 - Interlock conditions defined:
 - <u>Access interlock</u>: no beam ⊕ magnet off ⊕ ODH detection
 - <u>Magnet</u>: power supply interlock ↔ cryogenics system

Initial Safety Information for Experiments at CERN - ISIEC

- CERN is informed about all safety particularities of MERIT
- MERIT Safety structure:
 - H.Kirk & K.McDonald overall responsible as spokespersons
 - A.Fabich as GLIMOS
 - General Liaison in Matters of Safety
- Information on safety issues for the experiment under CERN/EDMS structure
- Also available from the experiment web pages: http://cern.ch/merit

AIE:	Lauran and C	000		EVERDINENT	NEDIT	and the second
ICTALLATI	January 2	Cohmuna (2000	EXPERIMENT:	MERIT	(htoriii)
POKESMAN	Harold G Kirk	(BNL) Kirk McDo	2006 pald (Princeton	Iniversity)	112A (FIN), I	12, 1110, ISK
LIMOS :	Adrian Fabich	(brie), faire friebo	nuid (i finiceto)i	TEL:	160345	
ILLED IN BY	Adrian Fabich			TEL:	160345	
) TEST BEA	MS:	FTN line				
LABS AT C	ERN (BLDG/RO	OM):	TT2A (FTN)	. TT2, TT10, ISR		
2) GASES, LI	QUIDS, CRYOLIC	QUIDS used in detectors	or kent in near	hy containers)		
	Device Type	Eluid 1 + %	Eluid 2 etc	Volumo		Max Flow
	Device Type	Fluid 1 + 76	Fiuld 2 etc.	Volume	ADS. FIESS.	max Flow
	cryogenics	LNZ		6000 liter	15 bar	200 q/s
	Haloon	includy		25 mei	100 081	1.5 // 3
	Hg loop hydr fluid	Quintolubric		~200 liter	206 bar	~701/s
	Hg loop hydr. fluid	Quintolubric	702271)	~200 liter	206 bar	~70 l/s
) OTHER CH	Hg loop hydr. fluid EMICALS	Quintolubric (see EDMS xic/Corrosive/Fla	702271)	~200 liter 5. solvents, addit	206 bar	~70 l/s
3) OTHER CH	Hg loop hydr. fluid EMICALS To see above, po flammable g.	Quintolubric (see EDMS xic/Corrosive/Fla	702271) Immable metal	~200 liter s, solvents, addit	206 bar	~70 l/s
3) OTHER CH	Hg loop hydr. fluid EMICALS To see above, no flammable g	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese	702271) Immable metal	~200 liter	206 bar	~701/s
3) OTHER CH	Hg loop hydr. fluid EMICALS To see above, no flammable g.	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese	702271) mmable metal	~200 liter	206 bar	-701/s
3) OTHER CH	Hg loop hydr. fluid EMICALS To see above, no flammable g.	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese	702271) Immable metal	~200 liter s. solvents, addii Gap Vol.	206 bar ives etc: Max.wate	-70 I/s
 OTHER CH ELECTRIC MAGNETS 	Hg loop hydr. fluid EMICALS To see above, no flammable g. Magnet type BNL solenoid	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese Power 5 MW	702271) mmable metal nt Field 15 T pulsed	~200 liter s, solvents, addil Gap Vol. 15 cm bore, 1m	206 bar ives etc: Max.wate 80 K cryogenic,	-70 l/s er press.
 OTHER CH ELECTRIC MAGNETS 	Hg loop hydr, fluid EMICALS To see above, no flammable g. TY Magnet type BNL solenoid	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese Power 5 MW	702271) mmable metal nt Field 15 T pulsed	~200 liter s, solvents, addi Gap Vol. 15 cm bore, 1m	206 bar ives etc: Max.wate 80 K cryogenic,	-70 l/s er press. 15 bar
 3) OTHER CH 4) ELECTRIC MAGNETS 	Hg loop hydr, fluid EMICALS To see above, no flammable g. TY Magnet type BNL solenoid	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese Power 5 MW	702271) mmable metal nt Field 15 T pulsed	~200 liter s, solvents, addi Gap Vol. 15 cm bore, 1m	206 bar ives etc: Max.wate 80 K cryogenic,	-70 l/s er press. 15 bar
3) OTHER CH 4) ELECTRIC MAGNETS	Hg loop hydr. fluid EMICALS To see above, no flammable g. Y Magnet type BNL solenoid	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese Power 5 MW	702271) mmable metal nt 15 T pulsed	~200 liter 5, solvents, addii Gap Vol. 15 cm bore, 1m	206 bar ives etc: Max.wate 80 K cryogenic,	-70 l/s er press. 15 bar
 OTHER CH ELECTRIC MAGNETS 	Hg loop hydr. fluid EMICALS To see above, no flammable g. Hy Magnet type BNL solenoid	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese Power 5 MW	702271) mmable metal nt Field 15 T pulsed	~200 liter s. solvents, addii Gap Vol. 15 cm bore, 1m	206 bar ives etc: Max.wate 80 K cryogenic,	-70 l/s er press. 15 bar Remote
3) OTHER CH 4) ELECTRIC MAGNETS High	Hg loop hydr. fluid EMICALS To see above, no flammable g. TY Magnet type BNL solenoid Detector Type	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese Power 5 MW Voltage	702271) Immable metal Int Field 15 T pulsed	~200 liter 5. solvents, addii Gap Vol. 15 cm bore, 1m Stored Energy	206 bar ives etc: Max.wate 80 K cryogenic, No of HV Channels	-70 l/s or press. 15 bar Remote Shut-off?
3) OTHER CH 4) ELECTRIC MAGNETS High Voltage	Hg loop hydr. fluid EMICALS To see above, no flammable g. TY Magnet type BNL solenoid Detector Type scintillator	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese Power 5 MW Voltage 222	702271) mmable metal nt Field 15 T pulsed Current 227	~200 liter s. solvents, addii Gap Vol. 15 cm bore, 1m Stored Energy 277	206 bar ives etc: Max.wate 80 K cryogenic, No of HV Channels	-70 l/s er press. 15 bar Remote Shut-off?
8) OTHER CH 9) ELECTRIC MAGNETS High Voltage (> 1 KV)	Hg loop hydr, fluid EMICALS To see above, no flammable g Magnet type BNL solenoid Detector Type scintillator not yet known	Quintolubric (see EDMS xic/Corrosive/Fla ases/liquids prese Power 5 MW Voltage ??? ???	702271) mmable metal nt Field 15 T pulsed Current ???? ???	~200 liter s, solvents, addil Gap Vol. 15 cm bore, 1m Stored Energy ??? ???	206 bar ives etc: Max.wate 80 K cryogenic, No of HV Channels	-70 l/s or press. 15 bar Remote Shut-off?