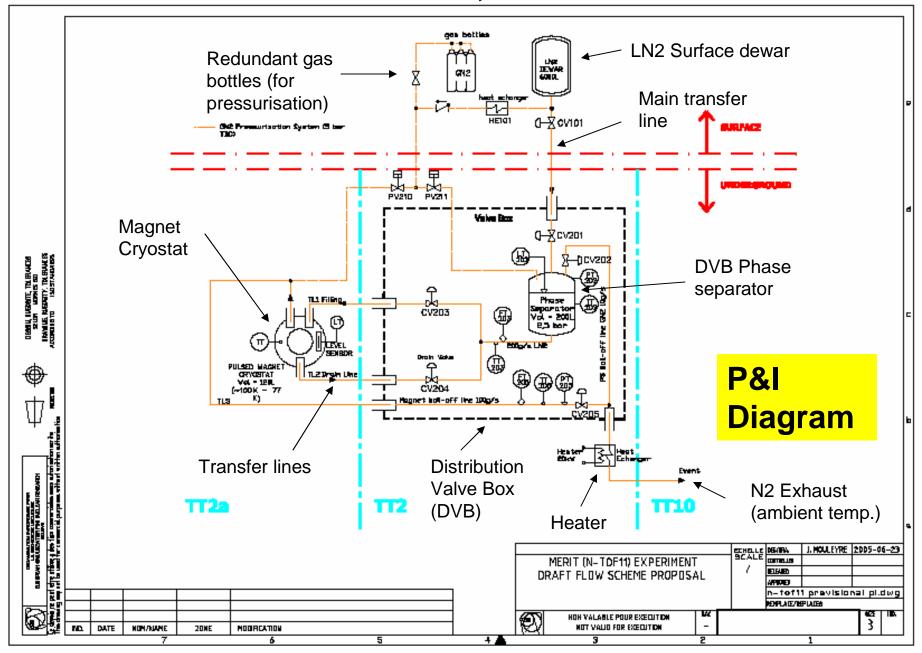
Discussion on MERIT Cryogenics Specifications


Outline

- List of questions & comments
- Possible roadmap

Ilias Efthymiopoulos,

CERN

3. FLOW SCHEME, FUNCTIONALITY

Filling of the magnet

- ☐ Fill the cryostat from the bottom rather than the top.
 - If required by the magnet design, it should be like this.
- ☐ The "He/LN2 port" will be used instead to support a room-temperature pressure relief valve for the N2 volume of the magnet
- The valve CV203 not in use and could be omitted

Filling rate of the magnet

- ☐ The flow capability of the line between the phase separator and the drain port of the magnet to be increased from 200 g/s to 300 g/s.
 - To assure the 100 g/s boil off rate → 20min cycle
 - As a consequence the size of CV204 should be modified accordingly
 - The design of CV204 can handle 200 g/s which is a large quantity per time unit
 - Increasing flow specifications results in a cost increase
 - May risk to bypass the 100g/s boil off rate in which case we must close CV204 further → Can big valves control small flows?
 - Can the magnet drains support that increase and what would be the corresponding pressure rise?
 - How important is to stick to 20min cycle? If it becomes 40min what we would really loose?

Safety aspects

- Complete the design and indicate the pressure relieve valves and other safety items.
 - Where will the released N2 gas go?
 - Is there any risk to have activated gas spread into the tunnel?
 - As a consequence the size of CV204 should be modified accordingly
 - It is mandatory and the design should show it that all the gas releases go to TT10 tunnel.
 - A collector will be installed somewhere → should be shown in some design

Pressure issues

- What will be the estimated supply pressure from the 6000L dewar source to the phase separator/valve box?
- Why is important to design for 20 bar when we may not exceed the 10 bar pressure?
 - It is mandatory from the CERN standards for pressure vessels in underground areas

December 15, 2005

Detailed design

- Need to define all the engineering aspects for the system such as dimensions, physical space, weight limitations, interconnections, etc.
- □ Define the safety and other standards the system must meet.
 - All these, and others, will be part of the specifications document that is currently under completion.

A Possible Roadmap

Target date:

- Installation of the system underground in November 2006
 - The magnet arrives from US
 - The cryogenics system is lowered down from bat.180
- Count backwards:
 - 2 month setting up and testing at the surface with dummy load (bat.180)
 - 5 months production of CVB

Milestone to place the contract to the company: March 2006

Today:

Address the remaining open issues in the design; go ahead and complete the specs. Action: Friedrich Haug

Milestone to have the specs ready: January 16, 2006

A Possible Roadmap

Next steps:

- ☐ Should we find it necessary after today's discussion:
 - Call an Engineering Review with external experts (3?) to validate the design in case we find it necessary after today's discussion
 - □ Agenda:
 - Magnet system by P. Titus
 - Cryogenics system by F. Haug
 - ☐ Organize it around **January 20**
- □ >January 20:
 - RAL takes over and does the tendering. *Action: Y.Ivanyushenkov*
 - □ Follow-up production by Yury + Friedrich
 - □ Delivery at CERN in September 2006