Rotating Tungsten Helium cooled Target RoTHeTa

E55

EUROPEAN SPALLATION SOURCE

Cyril Kharoua

Daniela Ene, Ferenc Mezei, Etam Noah, François Plewinski, Pascal Sabbagh,

Luca Massidda (CRS4, Sardinia)

Peter Sievers (retired from CERN)

Fernando Sordo (ESS-Bilbao)

4th High Power Targetry Workshop Malmö 2011-05-02

Outline

Some history

Practical motivation for Helium cooling **Practical** motivation for Granular Target Practical motivation for Rotating Target Main parameters of the RoTHeTa Neutronic performance >Thermo-Mechanical study >Loop characteristics Rotating seal >Maintenance >Lifetime

Conclusion

>Granular Tungsten target helium cooled was first proposed by Peter Sievers for a MW neutrino factory

First we have considered spheres in a stationary target Optimum configuration for cooling, thermal shock and thermal stress

⇒Heavy cooling requirements (High Pressure!)

Under the ESS condition a rotating wheel, fitted with tungsten rods and cooled with helium is a viable solution...

Practical Motivation for Helium Cooling

Objectives:
 Avoid Liquid metal technology
 Avoid Water cooling / corrosion issue related to tungsten target and therefore avoid cladding

Advantages:
 Known technology
 Low activity in the cooling fluid
 Leak tightness

>Drawbacks: Pressurized gas equipment (3-10bar) Leak tightness

Practical Motivation for Granular Target

>Objectives: Allows cooling fluid to

Allows cooling fluid to remove heat within the target (directly where it is deposited)

>Advantages: High density target (75% to 90% of pure tungsten) No thermal shock and low stress level Flexible target material (choice, arrangement, geometry...)

Practical Motivation for a Rotating Target

>Objectives: Increase lifetime (window, tungsten...) Alleviate the heat removal

Advantages:
 Dilution of specific activity and after heat
 Less frequent maintenance and handling of radioactive material
 Solid waste
 Upgradeable for higher beam power

>Drawbacks: Not yet proven concept (but we do not need to re-invent the wheel!) Rotating seals to be adapted from existing solutions Heavy assembly

Main Parameters of the Helium Cooled Rotating Granular Target

>A 2.5GeV elliptic Gaussian beam with an RMS of σ_x = 5 cm and σ_y = 1.5 cm (beam footprint at 4 σ of 20cm x 6cm), an average power of 5 MW, pulsed at 20 Hz

>The wheel is rotating at 30RPM (0.5Hz)

>The energy deposition calculated with FLUKA gave a maximum Power density (time average for 1/40 of the wheel) of 75W/cm³ (40 times less than in the static target case).

>External wheel diameter is150 cm and internal diameter of 50 cm. The helium is blown over the total surface continuously.

>Initially rods of 2cm diameter, now 1cm diameter

Brightness at 5 MeV (left) and at 10 MeV (right) on the moderator surface for a 1ms pulse length.

The rotating target made of rod cooled by helium will allow a density of 90% of the raw material, which shall give a performance close to the pure tungsten configuration.

courtesy F. Sordo et al.

Cyril Kharoua – 4th HPTW – Malmö – May 2011

EUROPEAN

SPALLATION SOURCE

Neutronic performance

Franz Gallmeier investigation (previous TSCS meeting) extended Rotating target configuration (run though optimization loop) Extrapolation with density (not so accurate)

Element	Effective density	Φ cold@10m	Ф cold@10m	Φ cold@10m	Comment	
	(1/cm ³)	(n/cm ² /prot.)	Perf in % vs. Best	Loss in % vs. Best		
W	19.4	6.28E-08	100.00%	0.00%	Calculated	
Sphere pure W	14	5.66E-08	90.07%	9.93%	Calculated	
Sphere Densimet (*)	13.875	5.61E-08	89.26%	10.74%	Educated guess	
Rods Densimet (*)	16.65	6.06E-08	96.47%	3.53%	Educated guess	

Tungsten is the most favourable target material, and its dilution is not affecting significantly the neutron production

*DENSIMET is a tungsten alloy with appropriate properties

courtesy F. Gallmeier

Cyril Kharoua – 4th HPTW – Malmö – May 2011

Thermo-mechanical study 2cm Rods

With a He-cooling circuit set at: Po = 10 Bar, v(He) 8 m.s⁻ ¹(mass flow of about 20kg/s!!! Which could reduced by tuning it for different zones)

 The peak temperature in the hottest rods is about 577°C (Inlet Temperature was 200°C)

•Helium ΔT_{bulk} =30K

•Stress in the rods is low even in a fatigue regime (endurance), about 30 to 50 MPa

Maximum temperature vs. Time

Thermo-mechanical study 1cm Rods H: Static Structural Equivalent Stress

Type: Equivalent (von-Mises) Stress

Unit: MPa Time: 1

05/04/2011 05:29

9.0535

6.4726 5.1822

3.8918 2.6013

1.3109 0.020435 Min

11.634 Max 10.344

With a more moderate He-cooling circuit (Po = 3 Bar, inlet v(He) of 4 m.s-1, mass flow of 3kg/s)

• The peak temperature in the hottest rods is about 485°C

•Helium ΔT_{bulk} = 200K

•Stress in the rods is very low even in a fatigue regime (endurance), about 10 to 20 Mpa

Thermo-mechanical study 1cm Rods

- For 3kg/s mass flow rate for 3 bar He
- Here the pressure drop is 0.1bar equivalent to 62kW of pumping power.

Thermo-mechanical study Cross flow configuration

Transverse cross flow is under estimation
The objective is to use a lower mass flow rates and increase the bulk ∆T in Helium
First estimation show the possibility to consider 2cm rods with 1mm gap (82%of the full W density).

Mass flow rates is about 3kg/s

 ΔT_{bulk} =200K

T_{max in He}=310°C

∆P≈1bar (VDI WärmeAtlas)

Volume Fraction of Tungsten vs. Space between rods for 2cm diameter rods

Page 15

Helium loop Pressure drop estimation

>The main component of the loop to be considered for the overall pressure head required at the pump are:

- The target material (see previous slides)
- The target shaft and other straight pipe (Half of the target)
- The Inlet rotating seals and outlet rotating seals
- The filters (Half of the target)
- The heat exchanger (Half of the target)

>The Inlet and Outlet rotating seals could be assumed to have the same pressure drop

>The Heat exchanger could be assumed to have half of the pressure drop seen in the target material

Helium loop Pressure drop estimation

A preliminary assessment could give indication of the pressure drop in the main component of the loop, for Helium flowing at 3kg/s and 3bar for a global volume of 2m³

J	Pressure	
	drop [bar]	Droliminom
The target material	0.1	estimation
The target shaft and other straight pipe	0.05	Cotimation
The Inlet rotating seals	0.1	
The outlet rotating seals	0.1	
The filters	0.05	
The heat exchanger	0.05	
	0.45	Total
Pumping Power	282.7 kW	
l Kharoua – 4 th HPTW – Malmö – May 2011		Page 17

Helium Loop and ancillaries loop

EUROPEAN

SPALLATION SOURCE

Differential pumping seal with chicanes between 3 bar and atmospheric pressure.
For 0.1mm wide and 50cm long path => at most 2g/s

Structural analysis

Structural analysis
 Simplified shell model (sector)
 Parameterized model (number of ribs, thickness)
 No thermal loads defined, but gravity, pressure (3bar), rotational velocity

Simplified post-processing using RCC-MRx criteria

Structural analysis

The table here summarize the ratio between the acceptable limit (according to RCC-MRx criteria) and the calculated stress.

>At 3bar with ribs every 12degree, the minimum thickness of material could be 3mm.

>If the pressure can be further reduced, the number of needed ribs (or shell thickness) will be reduced

		Angle between 2 ribs					
		9	12	30	45	60	
hickness (mm)	3	0.57	0.94	3.35	4.70	5.69	
	4	0.32	0.53	2.24	3.57	4.51	
	5	0.21	0.34	1.48	2.62	3.53	
	6	0.14	0.24	1.03	1.91	2.72	
	7	0.11	0.17	0.76	1.42	2.08	
Τ	8	0.08	0.13	0.58	1.09	1.61	

EUROPEAN

SPALLATION SOURCE

Maintenance / Layout

EUROPEAN SPALLATION SOURCE

Maintenance / Layout

>Exchange procedure: a proposal

Hot cell could be separated from the target station / monolith allowing an operation of it more disconnected from the target operation
In order to reduce the weight carried by the overhead crane the flask is moved on rails

>Basic maintenance is performed on helium circuit (rotating seal, filters, pumps, heat exchanger) by hands on it. The exposure to radiation shall be low.

>The lifetime of such target is supposed to be about 40 times longer than the static target

•As radiation damage will be spread over a large surface/volume

•Fatigue is negligible in the first estimation (non irradiated)

Facility	Target	Damag e	Int. Beam	Max. Power	Max. current density	Max. charge density	Time Online
		[dpa]	[MW.hr]	[MW]	[µA.cm ⁻²]	[C.cm ⁻²]	[weeks]
SINQ	Cannelloni Online	25	6840	0.86	31.4	900	104
	MEGAPIE predicted	6	1368	0.72	31.4	214	20
	MEGAPIE online	6.8	1678	0.78	31.4	243	18
SNS	Hg Predicted	10	5000	1.0	12.5?	225	52
	Hg Target 1 online	7.5	3055	0.85	12.5?	162	144
	Hg Target 2 online	7.2	3215	1.0	12.5?	145	52
	Rotating predicted	10	75000	1.5	27.2	4900	520
JSNS	Predicted (no cavitation)	5	6400	1.0	15.5	357	67
	Predicted (cavitation)	2	2500	1.0	15.5	140	26
ESS2003	Predicted [bauer, vlad]	10	7320	5.0	79.6	420	15
ESS2010	Predicted Hg [Ene]	10	10000	5.0	42.5	306	21
ESS2010	Predicted [He-cooled rot.]	10	400000	5.0	42.5	306	840

Conclusion

>3bar of pressure seems a viable option with 1cm rods, but further study shall be carried on to confirm and determine the minimum pressure acceptable >Neutron yield is optimum

Some of the main challenges lie in the replacement of the target and its associated downtime

>Attention has to be paid to local leak and radioactive release

>Special attention has to be paid to the rotating seal

Thank you for your attention

Cyril Kharoua – 4th HPTW – Malmö – May 2011