

60 GHz ECR source status

^{*} Sixty GHz ECR Ion Source using Megawatt Magnets

T. Lamy

M. Marie-Jeanne, P. Sortais, T. Thuillier Laboratoire de Physique Subatomique et de Cosmologie, Grenoble – France

I.V. Izotov, A. V. Sidorov, V. A. Skalyga, V. G. Zorin Институт Прикладной Физики - RAS, Nizhny Novgorod – Russia

F. Debray, C. Trophime, N. Vidal Laboratoire National des Champs Magnétiques Intenses, Grenoble – France

60 GHz ECR ion source for the Beta Beams

High ionization efficiency ion source required, delivering high intensity

- Radiation hard ECR ion source
- low volume, high plasma density (high ECR frequency)
- 10 Hz operation
- LPSC long term strategy in ECR ion sources development
 - To take advantage of this project to develop the ECR ion source operating
 - At the highest present ECR frequency
 - For a reasonable cost (warm technology for the magnet)

Electron Cyclotron Resonance Ion Sources (Basics)

Classical 'Minimum B' ECRIS

$$I_{\text{extracted}} \propto n_{\text{i}} = n_{e} = \frac{\mathcal{E}_{0} \times m_{e}}{e^{2}} \times \omega_{pe}^{2} \quad \begin{array}{c} \text{Electronic cyclotronic Resonance} \\ \text{Cutoff density } \omega_{\text{pe}} = \omega_{\text{ce}} \\ \mathbf{I} \propto \boldsymbol{\omega_{\text{ce}}}^{2} \end{array}$$
To increase I, increase n_e so ω_{ce} and consequently B

T. Lamy – LPSC - Nufact11, CERN/UNIGE, 2011, 1st - 6th August

First 60 GHz ECRIS 'SEISM' prototype specifications

Presently no ECRIS with such a (high) magnetic field (and high gradient)

Conceptual design undergoing for superconducting 56 GHz minimum B ECRIS in US and China

60 GHz ECRIS prototype simulation

R&D towards high ECR frequency for future ECRIS

- Low cost and fast development
- No superconductors, high field techniques (copper and water)
- Collaboration with CNRS intense magnetic fields laboratory (LNCMI)
 - Choice : Polyhelix technique (high currents in copper helices)

- T_{Max} loc. ~ 330 °C (H1)
- T_{Mean} ~ 80°C to 180°C (H1)

Helices construction

6

Helical slit cut by spark erosion

current

Keys on the external coils

H3

Chemical treatment Positioning the prepreg insulators

on the internal coils

Oven

Final machining

pitches from 2 to 5 mm

Cleaning to prevent shortcuts

Prototype mechanical design

The basic part: 'exchanger'

helices and current leads

2 sub-assemblies

SEVENTH FRAMEW

Extraction Flange

Characteristics

- Diameter 620 mm
- Length 480 mm
- 600 kg
- 30 tons Repel force

Radial cooling of the helices

About 700

insulators

Water cooling (deionized water) Water cooling flow ~ 30 l/s Pin = 27 bars ; Pout = 4 bars Tinlet = 20 °C, Toutlet = 40 °C

3.288e+02

2.670e+02 2.051e+02 1.433e+02 8.144e+01

> 小八 LNCMI

SEVENTH FRAMEW

Tinsulators

10 % of the total surface

Worth case (thinner pitch of H1) I = 30000 A Empty space : 1.7 mm Copper thickness : 2 mm Tmean = 180 °C, Tmax = 330 °C

SEISM prototype assembly

SEVENTH FRAMEWO

LNCMI : a place to perform experiments

秋 LNCMI

19 T /160 mm

Cooling 1000 m3/h deionized water

SEISM prototype setup on the M5 site

- M5 site adaptation for SEISM
 - Parallel hydraulic circuit (~ 50 l/s from 150 l/s)
 - Serial electrical connexion with M5 (impedance matching)

SEVENTH FRAMEWOR

11

小 LNCMI

SEISM magnetic field measurements principles

12

Helices temperature monitoring

- Resistance variation with T, R=R0(1+ $\alpha^*\Delta$ T), Copper (α = 0.0036)
 - R0 = 3 mΩ at 10 °C (SSI Hall temperature in winter...)
- $R=U/I = RO(1+\alpha^*\Delta T) \rightarrow \Delta T$
 - Voltage measured during operation
 - Intensity given by LNCMI supplies
- Automated magnetic induction measurements
 - Tesla meters, axial and radial Hall probes on specific stat
 - probes movements with jacks steppers 1 mm / 300 mm
 - Labview control

Magnetic field measurements results

13

Axial magnetic field induction from 1500 up to 15000 A — Axial and radial measurements three axis of the prototype (0, 15 and 30 mm)

15000 A measurements

Magnetic field induction norm

Expected results (and obtained) Axial symetry of the magnetic field Linear increase of B with intensity Unexpected results 10 mm shift of the maxima Lower amplitude on the extraction side No impact on the plasma characteristics

Iso-B for resonance zones

28 GHz (1T) ECR zone closed at about 12000 A The 60 GHz closed ECR zone should be obtained at 26000 A Plasma experiments are already 'magnetically' possible at 28 GHz using two LNCMI current supplies Phase 1 of this project is a success

SEVENTH FRAMEWOR PROGRAMME

Application for magnet time

Accepted for 20 days

15

Characterization of ion beams extracted from a 28 GHz ECR plasma in a split magnet

- To progress towards 60 GHz ECR operation of the ECRIS
 - Simple beam line : magnetic spectrometer and beam characterization devices
 - 10 kW 28 GHz gyrotron available from LPSC
 - A lot of safety issues (Microwaves, X rays, High voltage...)
- After beam measurements (a few weeks)
 - Terminate magnetic field measurements from 15000 up to 30000 A
 - If gyrotron available : 60 GHz experiments

Inside ECRIS 28 GHz prototype design

Efficiencies and currents expected ...?

Fast ionization, efficient ionization

- High density necessary
- High ECR frequency (60 GHz) and high power density
- 60 GHz : cut-off density 4.46x10¹³ ions/cm³ to be compared with 2x10¹⁰ ions/cm³ He ...(5 x 10¹² in a 0.25 I (plasma): 2x10¹⁰ ions/cm³ (ratio ~ 4.5 10⁻⁴)
- Multi-Ampères source !!!! Certainly avoid multi charged ions...
 - High intensity beam line will be required (mandatory...)
 - But good news from Russia

8th International Workshop 'Strong Microwaves and Terahertz Waves Sources and Applications' July 9 - 16, 2011 Nizhny Novgorod, Russia

1.6 mm extraction hole leads to 80% efficiency for He⁺ and only 300 mA total current

"Gas utilization efficiency optimization for short-pulsed ECR ion source" I. V. Izotov, V. A. Skalyga, V. G. Zorin (IAP Nizhny Novgorod)

SEVENTH FRAME

Design of the High intensity beam line

- Vacuum components (turbo pumps, chambers, tubes...) ordered
- Stands ordered
- Magnetic spectrometer current supply operational
- LNCMI installation in M3 rather problematic...
 - Concrete foundation slab resistance ... (Magnet > 2 tons)...
 - Layout
 - Magnetic fringing fields from other magnets and prototype (for gyrotron)
 - A lot of safety issues (HV, MW, X rays...)

60 GHz gyrotron

Pulsed 60 GHz 300 kW gyrotron manufactured by GYCOM
 Supplies Institute of Applied Physics - RAS (Nizhny Novgorod - Russia)
 Frequency 60 GHz, MW power 10 - 300 kW
 Pulse duration from 50 ms to 1 ms, pulse repetition rate up to 5 Hz

– Pulse duration from 50 ms to 1 ms, pulse repetition rate up to 5 Hz

Delivery at Grenoble spring 2012

Project #3965 Design, Manufacturing and Tests of Short Pulse ECR Multi-Charged Ion Source Prototype with High Ionization Efficiency

Eqipex 2011 under preparation

Superconducting bus from LNCMI to LPSC (4*15000 A) allowing future ECRIS R&D 28 and 60 GHz ion sources for SPIRAL2

T. Lamy – LPSC - Nufact11, CERN/UNIGE, 2011, 1st - 6th August

Thank you !

We acknowledge the financial support of the European Community under the European Commission Framework Programme 7 Design Study: EUROnu, Project Number 212372. The EC is not liable for any use that may be made of the information contained herein.