

Horn Optimization for nuSTORM HPTW 05/21/2014

Ao Liu*

A. Bross, D. Neuffer

**Fermilab, Indiana University
*www.frankliuao.com/research.html**

Fermilab, Indiana University

nuSTORM Overview

WHO WE ARE, WHAT WE DO

Fermilab, Indiana University

Overview – Site Plan

• 3.8 GeV/c muon decay ring (±10%) + near detector + far detector to study eV-scale neutrino oscillations and neutrino cross sections.

$$
- \mu^+ \to e^+ + \nu_e + \overline{\nu}_\mu \,, \, \mu^- \to e^- + \nu_\mu + \overline{\nu}_e
$$

- ► Well understood neutrino flux + flavor
- – $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}$ clean neutrino flux also utilizable
- –Provides a technology test bed for muon facilities;
- Affordable
	- Old technology; Simple implementation
- –Now has FNAL Stage 1 approval.

Fermilab, Indiana University

Overview - Facility

- • 100 KW target station
	- –120 GeV protons from MI;
	- –Magnetic horn to collect π+ or π-;
	- –Target material: graphite or Inconel;
- •A total run exposure of 10²¹ protons over 4-5 years
	- –2.6 x 10¹⁸ useful muon decays
- • Pion beamline to transport and inject the pions, and to accept the muons from pion decay
	- – No full-aperture fast kicker or separate pion decay channel needed. "Stochastic injection" used.

- • Gold target produces the most pions– but not recommended (energy deposition in the horn)
	- Graphite is the baseline target material;
	- Inconel yields more pions, and energy deposition problem is more tolerable;
	- Simulation tool: MARS15
- •• Inconel used in our optimization study

Courtesy of Sergei Striganov, APC, FNAL

Pion Beamline D&S

WHAT TO OPTIMIZE

Fermilab, Indiana University

Ao Liu

•The pion beamline is designed with reference momentum $P_0=5$ GeV/c, the simulation was initially done using ^π+ collected by a NuMI-like horn with slightly different lengths and target position, no full optimization.

Optimization Goal(s)

- • Single Goal: Maximize muons in the transverse and momentum acceptance of the ring --
	- – Why not directly use this criterion:
		- • Phase space of pions from each horn design is different, need to re-match the optics;
			- •Need full Monte Carlo simulation for each design;
			- •Too much computing power and time
- •Alternative Goals:

For horns collecting pions, for which the optics can be matched,

- Maximize muons within 3.8+-10% GeV/c, at the end of the production straight $(N_{\mu,end})$
- Maximize pions within 2000 µm at the end of the horn (N_{π})

They must be optimized simultaneously - No formula for the analytical correlation of the two.

Maximizing N_{u,end}

• π+ after the horn are linearly distributed in 4-6 GeV/c ($\int_{\mathcal{P}_{\pi}}(p_{\pi}) = ap_{\pi} + b$ 3.8±10% GeV/c from the N_o π+ within *P0x(1±m)* GeV/c can be estimated. $(m=\Delta P/P_0$ and $P_0=5$ GeV/c)

- • Different π+ beams from different horn collections have very different phase space distributions
	- Distorted bivariate Gaussian in the phase space must be fitted in order to obtain Twiss (Optics) parameters for matching;
	- N_{π} obtained from counting π+ in the fitted 2000 μm acceptance ellipse
- •• Large phase space area (more than 2000 μm) causes fitting bias

Maximizing N $_{_{\rm T}}$ (Cont'd)

/STORM

Maximizing N $_{\rm \pi}$ (Cont'd)

- • Is a set of Twissparameters (α and β) useable?
- • A range of feasible Twiss from MADX;
	- – Quad. gradient limit
	- Beam size limit inthe beamline
	- – Able to find a match?
	- – Next set of parameters

Many Big but calm Aggressive but small generations Big Aggressive

HOW TO OPTIMIZE Multiple Objective Genetic Algorithm (MOGA)

Ao Liu

SERVICE

pyGAmpi

- Different individuals are different combinations of parameters
- They give different objective values
	- (Different horns yield different $\mathsf{N}_{_{\mathsf{T}}}$ and $\mathsf{N}_{\mathsf{\mu,end}})$
- Objectives to be maximized / minimized
	- $\,$ (Max. $\mathsf{N}_{_{\mathsf{H}}}$ and $\mathsf{N}_{_{\mathsf{H},\mathsf{end}}})$
- Parameter constraints;
	- (Current in horn, neck radius, etc.)

- An individual horn is a combination of the above parameters, and horn the current (9 parameters);
- •Select parents based on the objectives, produce offspring;
- • Parameters are treated like "genes" – genes of children are the crossover and mutation of the parents' genes;
- • Eventually, the whole population will be improved, i.e. gives larger $\mathsf{N}_{\mathsf{\pi}}$ and $\mathsf{N}_{\mathsf{\mu,end}}$

•

MOGA process

GA starts, ^a number of random individual horns produced as the first generation

Model the Bfield in the horns, based on the parameters of each horn

Track π+ in the individuals, calculate N_{π} and N_{µ,end} for
each case

When the maximum generation number is reached, or the population stops improving,stop the algorithm

Select the best individuals, make the offspring. A child generation is generated

Population size: 200; Generation limit: 100; CPUs used in each generation: $~1200$

Optimization Results

IT WORKS

Ao Liu

Fermilab, Indiana University

 $N_{\mu,end}$ increased by 14%; N_π increased by 18%; Then, Pion beamline re-matched; π+ re-tracked; $μ+$ in both 2000 μm and $3.8±10%$ GeV/c increased by $8.3%$

Why not as high?

Higher-order effects not considered: Beta-beat, phase space difference for off-momentum particles, etc.

 $N_{\mu, end}$ and N_{π} increased by ~20%; (If just changing the target length: ~5%) Then, Pion beamline re-matched; π+ re-tracked; μ+ in both 2000 μm and $3.8\pm10\%$ GeV/c increased by $\sim16\%$

Conclusions

IMPORTANCE OF THE OPTIMIZATION

Ao Liu

Fermilab, Indiana University

- • nuSTORM benefits from the optimization:
	- –Expect 8.3% more neutrino flux, with a 38 cm Inconel target;
	- –Expect 16% more flux, with a 46 cm Inconel target.
- Other horn-based projects e.g. LBNE:
	- –Algorithm is expected to work if the objectives are known;
	- – Algorithm may be less complicated and faster, if no beamline tracking is needed;
	- –MOGA allows adding other constraints to obtain a more realistic design + optimization
- Future:
	- –Modify the objectives based on further ring design studies;
	- Collaboration work with other projects if needed and interested.

Thanks

YOUR COMMENTS ARE WELCOME

Fermilab, Indiana University

Ao Liu

Back Ups

IN CASE I FORGOT

Fermilab, Indiana University

Ao Liu

• For the past decade, a lot of effort has been spent on neutrino oscillation physics

8 channels accessible by $\mu^- \rightarrow e^- \nu_\mu \overline{\nu}_e$ vSTORM $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu$ $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$ disappearance $v_{\mu} \rightarrow v_{\mu}$ $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ $v_{\mu} \rightarrow v_{e}$ appearance ("platinum" channel?) \mathbf{v} \rightarrow \mathbf{v} appearance (atmospheric oscillation) $\overline{v}_e \rightarrow \overline{v}_e$ $v_e \rightarrow v_e$ disappearance $\overline{v}_{e} \rightarrow \overline{v}_{\mu}$ $v_e \rightarrow v_u$ appearance: "golden" channel appearance: "silver" channel

Introduction-Facility

•100 KW target station

- **Links of the Company** 120 GeV protons from MI;
- **Links of the Company** Magnetic horn to collect π+ or π-;
- **Links of the Company** Target material: graphite or Inconel;
- •A total run exposure of 10²¹ protons over a period of 4-5 years
	- **Links of the Company** 8 x 10¹² protons per pulse; cycle time 1.33 sec.
	- $-$ A total of 2.6 \times 10¹⁸ useful muon decays, updated from 1.9 x 10¹⁸ useful muon decays in the proposal
- • Pion beamline to transport and inject the pions, and to accept the muons from pion decay
	- – No full-aperture fast kicker or separate pion decay channel needed
- • Gold target gives the most pion productivity but is not recommended(intensive energy deposition in a horn)
	- – Graphite is the baseline target material in the proposal;
	- – Inconel yields more pions, but engineering challenges may rise, though better than gold;
- • Inconel used in theoptimization study

Maximizing N_{u,end}

- • $f_{\bm{p}_{\pi}}(p_{\pi}) = ap_{\pi} + b$
- • e.g. *^a*= -1.46935529e-07, *b*=1.23467765e-03
- • *a* and *b* changes only slightly w.r.t different horns (Usually a few percent)

•The above implies that the maximum number of μ + within 3.8±10% GeV/c generated is

 $N_{\mu, \text{end}}(m = 0.18) = 8.82 \times 10^2 N_0 \left[1.8 \times 10^3 a + 0.36 b\right]$

- – Assuming the phase space acceptance of the pion beamline $\mathsf{P}_\mathsf{\Phi}$ for different initial conditions is the same;
- – $-$ This has taken the momentum acceptance and decay $\,$ kinematics into account.
- Horn variation gives slightly different coefficients *^a*, *b*, and very different N_o

MOGA process

GA starts, ^a number of random individual horns produced as the first generation

Model the Bfield in the horns, based on the parameters of each horn

Track π+ in the individuals, calculate N_{π} and N_{µ,end} for
each case

When the maximum generation number is reached, or the population stops improving,stop the algorithm

Select the best individuals, make the offspring. A child generation is generated

~40,000 corehours used in each search