

Horn Optimization for nuSTORM HPTW 05/21/2014

Ao Liu*

A. Bross, D. Neuffer

Fermilab, Indiana University

*www.frankliuao.com/research.htm

nuSTORM Overview

WHO WE ARE, WHAT WE DO

Ao Liu

Overview – Site Plan

 3.8 GeV/c muon decay ring (±10%) + near detector + far detector to study eV-scale neutrino oscillations and neutrino cross sections.

$$-\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_\mu$$
, $\mu^- \rightarrow e^- + \nu_\mu + \overline{\nu}_e$

- Well understood neutrino flux + flavor
- $-\pi^{+} \rightarrow \mu^{+} + v_{\mu} \quad \pi^{-} \rightarrow \mu^{-} + \overline{v}_{\mu} \text{clean neutrino flux also utilizable}$
- Provides a technology test bed for muon facilities;
- Affordable
 - Old technology; Simple implementation
- Now has FNAL Stage 1 approval.

Overview - Facility

- 100 KW target station
 - 120 GeV protons from MI;
 - Magnetic horn to collect π + or π -;
 - Target material: graphite or Inconel;
- A total run exposure of 10²¹ protons over 4-5 years
 - 2.6 x 10¹⁸ useful muon decays
- Pion beamline to transport and inject the pions, and to accept the muons from pion decay
 - No full-aperture fast kicker or separate pion decay channel needed.
 "Stochastic injection" used.

- Gold target produces the most pions
 – but not recommended (energy deposition in the horn)
 - Graphite is the baseline target material;
 - Inconel yields more pions, and energy deposition problem is more tolerable;
 - Simulation tool: MARS15
- Inconel used in our optimization study

Courtesy of Sergei Striganov, APC, FNAL

Pion Beamline D&S

WHAT TO OPTIMIZE

5/23/2014

Fermilab, Indiana University

- The pion beamline consists of the transport beamline, the beam combination section (BCS), and the storage ring production straight shared by π and μ .
- The pion beamline is designed with reference momentum $P_0=5$ GeV/c, the simulation was initially done using π + collected by a NuMI-like horn with slightly different lengths and target position, no full optimization.

Optimization Goal(s)

- Single Goal: Maximize muons in the transverse and momentum acceptance of the ring --
 - Why not directly use this criterion:
 - Phase space of pions from each horn design is different, need to re-match the optics;
 - Need full Monte Carlo simulation for each design;
 - Too much computing power and time
- Alternative Goals:

For horns collecting pions, for which the optics can be matched,

- Maximize muons within 3.8+-10% GeV/c, at the end of the production straight (N $_{\mu,\text{end}}$)
- Maximize pions within 2000 μ m at the end of the horn (N_{π})

They must be optimized simultaneously – No formula for the analytical correlation of the two.

Maximizing $N_{\mu,end}$

 π + after the horn are linearly distributed in 4-6 GeV/c ($f_{p_{\pi}}(p_{\pi}) = ap_{\pi} + b$ 3.8±10% GeV/c from the $N_0 \pi$ + within $P_0 x(1 \pm m)$ GeV/c can be estimated. $(m = \Delta P / P_0 and$ $P_0=5 \text{ GeV/c}$)

Fermilab, Indiana University

- Different π+ beams from different horn collections have very different phase space distributions
 - Distorted bivariate Gaussian in the phase space must be fitted in order to obtain Twiss (Optics) parameters for matching;
 - N_{π} obtained from counting $\pi +$ in the fitted 2000 μm acceptance ellipse
- Large phase space area (more than 2000 µm) causes fitting bias

Maximizing N_{π} (Cont'd)

Maximizing N_{π} (Cont'd)

叩

- Is a set of Twiss parameters (α and β) useable?
- A range of feasible Twiss from MADX;
 - Quad. gradient limit
 - L Beam size limit in the beamline
 - Able to find a match?
 - Next set of parameters

Big but calm

Many Aggressive but small generations

Big Aggressive

Nature chooses better survives

Multiple Objective Genetic Algorithm (MOGA) HOW TO OPTIMIZE

pyGAmpi

- A python-mpi code to run the Genetic Algorithm (GA), to improve the individuals
 - Different individuals are different combinations of parameters
 - They give different objective values
 - (Different horns yield different N_{π} and $N_{\mu,end}$)
 - Objectives to be maximized / minimized
 - (Max. N_{π} and $N_{\mu,end}$)
 - Parameter constraints;
 - (Current in horn, neck radius, etc.)

- An individual horn is a combination of the above parameters, and horn the current (9 parameters);
- Select parents based on the objectives, produce offspring;
- Parameters are treated like "genes" genes of children are the crossover and mutation of the parents' genes;
- Eventually, the whole population will be improved, i.e. gives larger N_{π} and $N_{\mu,\text{end}}$

MOGA process

GA starts, a number of random individual horns produced as the first generation Model the Bfield in the horns, based on the parameters of each horn

Track π + in the individuals, calculate N_{π} and N_{μ ,end} for each case

When the maximum generation number is reached, or the population stops improving,stop the algorithm Select the best individuals, make the offspring. A child generation is generated

Population size: 200; Generation limit: 100; CPUs used in each generation: ~1200

Optimization Results

IT WORKS

Ao Liu

 $N_{\mu,end}$ increased by 14%; N_{π} increased by 18%; Then, Pion beamline re-matched; π + re-tracked; μ + in both 2000 μ m and 3.8±10% GeV/c increased by 8.3%

Why not as high?

Higher-order effects not considered: Beta-beat, phase space difference for off-momentum particles, etc.

 $N_{\mu,end}$ and N_{π} increased by ~20%; (If just changing the target length: ~5%) Then, Pion beamline re-matched; π + re-tracked; μ + in both 2000 μ m and 3.8±10% GeV/c increased by ~16%

Ao Liu

Conclusions

IMPORTANCE OF THE OPTIMIZATION

Ao Liu

- nuSTORM benefits from the optimization:
 - Expect 8.3% more neutrino flux, with a 38 cm Inconel target;
 - Expect 16% more flux, with a 46 cm Inconel target.
- Other horn-based projects e.g. LBNE:
 - Algorithm is expected to work if the objectives are known;
 - Algorithm may be less complicated and faster, if no beamline tracking is needed;
 - MOGA allows adding other constraints to obtain a more realistic design + optimization
- Future:
 - Modify the objectives based on further ring design studies;
 - Collaboration work with other projects if needed and interested.

Thanks

YOUR COMMENTS ARE WELCOME

5/23/2014

Fermilab, Indiana University

Back Ups

IN CASE I FORGOT

5/23/2014

Fermilab, Indiana University

 For the past decade, a lot of effort has been spent on neutrino oscillation physics

8 channels accessible by $\mu^- \to e^- \nu_{\mu} \overline{\nu}_{e} \quad v STORM$ $\mu^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +} \nu_e \overline{\nu}_\mu$ $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$ disappearance $\nu_{\mu} \rightarrow \nu_{\mu}$ $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ $\nu_{\mu} \rightarrow \nu_{e}$ appearance ("platinum" channel?) appearance (atmospheric oscillation) $\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$ $\nu_e \rightarrow \nu_e$ disappearance $\overline{\nu}_{_{e}} \rightarrow \overline{\nu}_{_{\mu}}$ $\nu_{e} \rightarrow \nu_{\mu}$ appearance: "golden" channel appearance: "silver" channel

Introduction-Facility

- 120 GeV protons from MI;
- Magnetic horn to collect π + or π -;
- Target material: graphite or Inconel;
- A total run exposure of 10²¹ protons over a period of 4-5 years
 - 8 x 10¹² protons per pulse; cycle time 1.33 sec.
 - A total of 2.6 x 10¹⁸ useful muon decays, updated from 1.9 x 10¹⁸ useful muon decays in the proposal
- Pion beamline to transport and inject the pions, and to accept the muons from pion decay
 - No full-aperture fast kicker or separate pion decay channel needed

- Gold target gives the most pion productivity but is not recommended (intensive energy deposition in a horn)
 - Graphite is the baseline target material in the proposal;
 - Inconel yields more pions, but engineering challenges may rise, though better than gold;
- Inconel used in the optimization study

Maximizing $N_{\mu,end}$

- $f_{\boldsymbol{p}_{\pi}}(\boldsymbol{p}_{\pi}) = a\boldsymbol{p}_{\pi} + b$
- e.g. a= -1.46935529e-07,
 b=1.23467765e-03
- a and b changes only slightly w.r.t different horns (Usually a few percent)

 The above implies that the maximum number of µ+ within 3.8±10% GeV/c generated is

 $N_{\mu,\text{end}}(m = 0.18) = 8.82 \times 10^2 N_0 \left[1.8 \times 10^3 a + 0.36b \right]$

- Assuming the phase space acceptance of the pion beamline P_{Φ} for different initial conditions is the same;
- This has taken the momentum acceptance and decay kinematics into account.
- Horn variation gives slightly different coefficients a, b, and very different N₀

MOGA process

GA starts, a number of random individual horns produced as the first generation Model the Bfield in the horns, based on the parameters of each horn Track π + in the individuals, calculate N_{π} and N_{μ ,end} for each case

When the maximum generation number is reached, or the population stops improving,stop the algorithm Select the best individuals, make the offspring. A child generation is generated

~40,000 corehours used in each search