

Superconducting Solenoid: Thermal Issues

Peter Loveridge <u>P.Loveridge@rl.ac.uk</u> STFC Rutherford Appleton Laboratory, UK

January 2010

Context

Neutrino factory study-2 target concept courtesy: Van Graves, ORNL

Superconducting Solenoid: Technical Challenges

- Combination of high field (~14T) and large bore (~1.3 m)
 - Huge inter-coil forces (~10,000 metric tons axial compression)
 - Huge stored energy (600 MJ)
- Nb3Sn superconductor
 - Brittle
 - Strain sensitivity
- Harsh radiation environment
 - Radiation damage to materials
 - Heat load on coils

Of particular concern:

- 1. Time averaged heat load on cold mass
- 2. Instantaneous pulsed beam heating of superconductor

Consider steady-state thermal operation of SC coils:

Energy In	=	Energy Out
(secondary beam heating rate)		(cooling rate)

Temperature history in cold mass

Where does the 4 MW Beam Power go?

Regional deposition of 4MW beam power (From FLUKA simulation by John Back, Warwick)

Region	Power [kW]	% of 4 MW Beam Power
WC Shield	2,694	67.3
Other (mostly particles inside bore)	577	14.4
Hg Jet	401	10.0
Cu Coils	232	5.9
SC Coils	62.7	1.6
Iron Plug	15.2	0.4
Hg Pool	12.5	0.3
Be Window (at 6m)	1.7	-

~63 kW heat load on the cold mass at 4K is very large

What does this mean practically?

~63 kW heat load on the cold mass at 4K

Some numbers...

- 1W boils off 1.4 litres of liquid helium in 1 hour (latent heat)
 63 kW would boil off 86 m³ of liquid helium in 1 hour
- 1000 litres of liquid helium costs ~£3000
 - 86 m³ of liquid helium equivalent to £258,000 per hour
- Need to recover helium
 - i.e. 63 kW re-condensing power would be required

Comparison with the LHC

 CERN - LHC uses eight 4.5K refrigerators – one for each sector – each with a capacity of 18kW at 4.5K

Large Scale Helium Refrigerator by Linde: 18 kW for CERN - LHC

The cryogenic cooling power at 4.5K at the CERN accelerator complex

• i.e. 63 kW is equivalent to $\sim 1/2$ the total cooling power at the LHC!

Interpretation

Steady-state heat load:

- 63 kW load on the cold mass is huge
- Technical feasibility issues
 - Heat transfer rates and thermal time constants
 - Is it possible to remove heat from the SC cable at that rate?
- Prohibitive cost
 - Refrigeration plant

Pulsed Beam Heating

FLUKA energy deposition simulation courtesy: John Back, Warwick

• Peak energy deposition in superconducting coil:

 $\frac{200 \,[MGy/yr]}{2e7 \,[sec] \times 50 \,[Hz]} = 0.2 \,[J/kg \text{ per pulse}]$

Science & Technology Facilities Council Rutherford Appleton Laboratory

Temperature jump in Cold Mass Materials

• Recall: ΔT per pulse depends on deposited power density and material heat capacity

Example: ITER Cable cross-section

Stainless-steel area ~ 45% Copper area ~ 13% Nb3Sn area ~ 9%

Specific heat of coil materials

• e.g. each pulse gives a ΔT in Copper of the order:

$$\Delta T = \frac{\text{Energy Density}}{\text{Heat Capacity}} = \frac{0.2 \text{ [J/kg]}}{0.1 \text{ [J/kg.K]}} = 2 \text{ K}$$

Superconductor Temperature Margin

- Example:
 - Operating at 4K, with say, 10% margin on the load line
 - Temperature margin is then of the order:

 $\frac{10}{100}$ × (18 - 4) = 1.4 K

*Critical surface diagram for Nb*₃*Sn*

• i.e. operating superconductor margin will typically be of the order 1 K

Interpretation

Pulsed Heating

- The temperature jump from a single beam pulse of the order ~ 2 K
- Operating temperature margin of the order ~ 1 K
- i.e. a single pulse could quench the magnet?!

Summary

The radiation heat load on the main superconducting coil is extremely high!

Identified two areas of concern:

- 1. The steady state heat load on the cold mass
- 2. The instantaneous ΔT from a single beam pulse

Need to revisit the conceptual thermal design

