MANCHESTE

Nuclear Graphite - Fission Reactor Brief Outline of Experience and Understanding

Professor Barry J Marsden and Dr. Graham N Hall Nuclear Graphite Research Group The University of Manchester 20 March 2013

School of Mechanical, Aerospace and Civil Engineering, University of Manchester, PO Box 88, Manchester, M13 9PL Tel: +44 (0) 161 275 4399, barry.marsden@manchester.ac.uk

Overview

- •Nuclear Graphite – Use, Manufacture, Microstructure
- •Irradiation Damage to Crystal Structure
- •Radiolytic Oxidation
- • Physical Changes – to Polycrystalline Graphite due to Fast Neutron Damage and Radiolytic Oxidation
- Irradiation Creep

Use of Graphite in the Nuclear Industry

•Moderator

MANCHES

- Slow down neutrons by scattering
- High scatter cross-section
- Low absorption cross-section
- Reflector
	- Reflects neutrons back into the core
	- Protect surrounding supports structure and pressure vessel
- Major Structural Component
	- Provided channels for control rods and coolant gas
- Neutron Shield
	- Boronated graphite
- Thermal columns in research reactors
- •Moulds for casting uranium fuel

Type of Graphite Moderated Reactors

•Air-cooled

MANCHESTER

- Chicago Pile, GLEEP, BEPO, Windscale Piles, G1-France
- • Light Water-cooled Graphite Moderated
	- Hanford, Russian-PPR, RBMK
- • Carbon Dioxide Cooled
	- UK and French Magnox reactors, AGR
- • Helium Cooled
	- Dragon, Peach Bottom, Fort St. Vrain, THTR, AVR
	- HTR, HTR-10 China, HTTR Japan, PBMR South Africa
	- Generation IV VHTR

Chicago Pile 1

Typical Graphite Components

Torness Core – During **Construction**

MANCHESTER

 HTR-10 During Construction in **China**

Final Product

MANCHESTER

Fh
5

- • Either anisotropic or semi-isotropic product
	- Modern reactors use graphite with semi-isotropic properties
- \bullet Significant porosity ~20%
	- ~10% open porosity, ~10% closed porosity
	- Density $1.72 1.8$ g/cm³ compared to 2.26g/cm³ for perfect graphite crystal
- \bullet High purity – impurities measured in parts per million (ppm)
- \bullet Nuclear designer requires
	- Semi-isotropic 1.1 Defined by Coefficient of Thermal expansion (CTE) in orthogonal directions
	- High density
	- Optimum material properties
	- High thermal conductivity
	- High purity (neutronic and waste point of view)
	- Dimensional stability under irradiation, associated with high CTE ~4 x 10^{-6} K⁻¹ (20-120^oC)

Computed X-ray tomography images of various grades of graphite

Gilsocarbon

IG-430

MANCHESTER

Crystal structure

- • lattice spacing
	- –*a* = 2.4612 × 10-10 m
	- *c* = 6.7079 × 10-10 m
- alternately stacked planes $-$ 335 \times 10⁻¹² m
- density
	- 2.66 g/cm 3
- CTE
	- *^αa* = -1.25 × 10-6 K-1 (20-120ºC)
	- *α c* = 26 × 10-6 K-1 (20-120ºC)

The University
of Manchester **Irradiation damage to graphite Crystallites**

- • Damage leads to crystal changes:
	- Stored energy (Significant below irradiation temperatures 150ºC, insignificant above 350ºC)
	- Dimensional changes
	- –Thermal conductivity changes
	- Modulus changes

MANCHESTE

- Strength changes?
- No Coefficient of Thermal Expansion (CTE) changes above \sim 300°C
- Irradiation creep (when under stress)

Fast Neutron Damage

MANCHEST

The University
of Mancheste

- •Thermal reactor neutron energies up to 10MeV, average 2MeV
- \bullet About 60eV to permanently displace a carbon atom from the lattice
- \bullet Most damage due to fast neutron energies > 0.1 MeV
- \bullet Cascade caused by primary and secondary knock-ons
- \bullet Interstitial and vacancy loops are formed
- •Size of loops depends on irradiation annealing
- \bullet Change in crystallite behaviour at an irradiation temperature of about 250ºC
- \bullet A measure of damage is irradiation "dose " of "fluence " units:
- \bullet displacements per atom "dpa "
	- n/cm 2 -Equivalent DIDO Dose (EDND)
	- n/cm 2 –with energies greater than 0.18MeV (En>0.18MeV)
	- nvt neutron velocity time

MANCHESTER

Formation of interstitial and vacancy loops

MANCHESTER

Irradiation defects in graphite crystals (HOPG)

(x 20,000)

Dose $n/cm²$ x 10²⁰ EDND

MANCHESTER

TEM: *In situ* heating

Upon heating, a gradual closure of cracks was observed because of the thermal expansion of the graphite crystallites surrounding the cracks.

TEM *In situ* electron irradiation

Closure of a crack in Gilsocarbon after In-situ electron irradiation. The feature with bright contrast does not disappear completely. Note ^a small part of crack (indicated by arrow), which was covered by the electron beam has not closed completely

MANCHESTER

Radiolytic Oxidation

- $\bullet~$ Two types of oxidation can occur in CO $_2.$
	- Thermal oxidation is a purely chemical reaction between graphite and CO₂.
	- –Reaction is endothermic, is negligible below about 625°C and is not important up to 675°C.
	- Only an issue for HTRs

MANCHEST

The Universit
of Manchest

- Radiolytic oxidation occurs when CO₂ is decomposed by fast neutron and gamma radiation (radiolysis) to form CO and an active oxidising species which attacks the graphite porous structure.
	- – Radiolytic oxidation occurs predominantly within the graphite pores.
	- Overall component geometry stays essentially the same

Radiolytic Oxidation

- •The mechanism of radiolytic oxidation is:
- •Gas Phase

MANCHESTEF

versi

The Univ
of Manch

- •CO ²--------radiation -----> CO+O*
- •CO+O*----------------------> CO₂
- •Graphite Pore Surface
- •O*+C----------------------> CO
- •**Definition**
	- G_{c} is the number of carbon atoms gasified by the oxidising species produced by the absorption of 100eV of energy in the CO_2 contained within the graphite pores.

Oxidising

species

Irradiation Damage in Polycrystalline Graphite

- • Crystal changes modify polycrystalline dimensions and properties through the microstructure
	- Stored Energy Only significant below 150°C, negligible at 350°C
	- Dimensional changes
	- CTE

MANCHESTEF

- Young's modulus
- **Strength**
- Thermal conductivity
- Irradiation creep (when under stress)
- \bullet Radiolytic oxidation further modifies these properties
- \bullet Semi-isotropic graphite is considered in the next section

Graphite Irradiation Behaviour – Isotropic Gilsocarbon irradiated at 550 o C

MANCHESTEF

Jniversi

Transverse direction

Shrinkage of CSF Graphite Irradiated at 800°C to various Irradiation Doses

MANCHESTER **Gilsocarbon Dimensional Changes**

The University
of Manchestei

Gilscarbon Dimensional change

Mrozowski cracks

Dose n/cm^2 EDND x 10^{20}

Unirradiated Gilsocarbon Specimens 7 mm 10^p $\ln \mathrm{d} \mathrm{l}$ 285×10^{20} n/cm² EDND +0.9% $\Delta V/V_{o}$ Swelling Gilsocarbon particles Swelling Gilsocarbon particles

Gilsocarbon irradiated to 271×10^{20} n/cm² \rm{EDND} 33% $\rm{\Delta V/V} _{\rm o}$

Gilsocarbon Coefficient of Thermal Expansion

MANCHESTER

at R.T.

at 800°

The University
of Mancheste

MANCHESTER

Gilsocarbon Thermal Resistivity

MANCHESTER

Gilsocarbon Change Young's Modulus

Gilsocarbon Young's Modulus

Dose $n/cm²$ EDND $x10²⁰$

Reduction in properties due to radiolytic oxidation

MANCHESTER

•The black symbols are drilled specimens indicating the loss of section is a major factor

IRRIGHESTER
 IRRIGHESTER
 IRRIGHESTER
 IRRIGHESTER

- •Due to fast neutron irradiation
- • Significantly reduces stresses in nuclear graphite components
- \bullet **Definition**

MANCHEST

 The difference in dimensions between a stressed sample and a sample having the same properties as that sample when unstressed

•

Dimensional Change Under Load

Example ATR-2E Graphite

- • Under compressive load shrinkage is increased
	- –Upper right
- Under tensile load shrinkage is decreased
	- Lower right
- • There is also a lateral (Poisson's) effect
	- Below

DIMENSIONAL CHANGES OF ATR-2E AT 500°C UNDER COMPRESSIVE LOAD

DIMENSIONAL CHANGES OF ATR-2E AT 500°C UNDER TENSILE LOAD

Irradiation Creep Curves Example ATR-2E (500 oC)

• Irradiation creep curve can be simply obtained by subtraction of the unloaded dimensional change curve from the crept dimensional change curve

MANCHESTER

Inivers

- • However, for assessments this would require data for a range of temperatures and fast neutron fluence covering all the expected conditions.
- • In addition changes to the Coefficient of Thermal Expansion (CTE) and Young's modulus have been observed.

The Universit
of Mancheste **Issues to consider**

•**Properties**

MANCHESTER

- thermal conductivity
- thermal shock resistance
- –modulus of elasticity
- tensile strength
- CTE
- dimensional change & irradiation creep
	- initial compressive stress
- Protons versus neutrons
	- dose rate effect (pulsed versus continuous)
	- helium production
- \bullet POCO
	- historical experience