

MANCHESTE

Nuclear Graphite - Fission Reactor Brief Outline of Experience and Understanding

Professor Barry J Marsden and Dr. Graham N Hall Nuclear Graphite Research Group The University of Manchester 20 March 2013

School of Mechanical, Aerospace and Civil Engineering, University of Manchester, PO Box 88, Manchester, M13 9PL Tel: +44 (0) 161 275 4399, barry.marsden@manchester.ac.uk

Overview

- Nuclear Graphite Use, Manufacture, Microstructure
- Irradiation Damage to Crystal Structure
- Radiolytic Oxidation
- Physical Changes to Polycrystalline Graphite due to Fast Neutron Damage and Radiolytic Oxidation
- Irradiation Creep

Use of Graphite in the Nuclear Industry

Moderator

MANCHES

- Slow down neutrons by scattering
- High scatter cross-section
- Low absorption cross-section
- Reflector
 - Reflects neutrons back into the core
 - Protect surrounding supports structure and pressure vessel
- Major Structural Component
 - Provided channels for control rods and coolant gas
- Neutron Shield
 - Boronated graphite
- Thermal columns in research reactors
- Moulds for casting uranium fuel

Type of Graphite Moderated Reactors

• Air-cooled

MANCHESTER

- Chicago Pile, GLEEP, BEPO, Windscale Piles, G1-France
- Light Water-cooled Graphite Moderated
 - Hanford, Russian-PPR, RBMK
- Carbon Dioxide Cooled
 - UK and French Magnox reactors, AGR
- Helium Cooled
 - Dragon, Peach Bottom, Fort St. Vrain, THTR, AVR
 - HTR, HTR-10 China, HTTR Japan, PBMR South Africa
 - Generation IV VHTR

Chicago Pile 1

Typical Graphite Components

Torness Core – During Construction

MANCHESTER 1824

HTR-10 During Construction in China

Final Product

MANCHESTER

L L L

- Either anisotropic or semi-isotropic product
 - Modern reactors use graphite with semi-isotropic properties
- Significant porosity ~20% lacksquare
 - ~10% open porosity, ~10% closed porosity
 - Density 1.72 1.8g/cm³ compared to 2.26g/cm³ for perfect graphite crystal
- High purity impurities measured in parts per million (ppm)
- Nuclear designer requires lacksquare
 - Semi-isotropic 1.1 Defined by Coefficient of Thermal expansion (CTE) in orthogonal directions
 - High density
 - Optimum material properties
 - High thermal conductivity
 - High purity (neutronic and waste point of view)
 - Dimensional stability under irradiation, associated with high CTE \sim 4 x 10⁻⁶ K⁻¹ (20-120°C)

Grade	ZXF-5Q	AXF-5Q	Gilsocarbon	IG-430	IG-110
Comment	candidate	similar to AXF- 8Q1 (US historical experience)	UK AGR experience	Japanese & EU experience	Japanese & EU experience
Particle size (µm)	1	5	500	10	20
Pore size (µm)	0.3	0.8	42	-	16
Density (g/cm ³)	1.78	1.78	1.81	1.82	1.77
Comp. strength (MN/m ²)	175	138	70	97	79
Flex. strength (MN/m ²)	112	86	23	52	40
Tensile strength (MN/m ²)	79	62	18	38	27
Modulus (GN/m ²)	14.5	11.0	10.8	10.8	9.7
CTE (10 ⁻⁶ K ⁻¹)	8.1	7.9	4.3	4.5	4.0
Thermal conduct. (W/m K)	70	95	131	143	135

Computed X-ray tomography images of various grades of graphite

Gilsocarbon

IG-430

MANCHESTER

Crystal structure

- lattice spacing
 - $-a = 2.4612 \times 10^{-10} \text{ m}$
 - $c = 6.7079 \times 10^{-10} \text{ m}$
- alternately stacked planes - $335 \times 10^{-12} \,\mathrm{m}$
- density
 - 2.66 g/cm³
- CTE
 - $\alpha_a = -1.25 \times 10^{-6} \text{ K}^{-1} (20-120^{\circ}\text{C})$
 - $\alpha_c = 26 \times 10^{-6} \text{ K}^{-1} (20-120^{\circ}\text{C})$

Irradiation damage to graphite Crystallites

- Damage leads to crystal changes:
 - Stored energy (Significant below irradiation temperatures 150°C, insignificant above 350°C)
 - Dimensional changes
 - Thermal conductivity changes
 - Modulus changes

MANCHESTE

he University f Manchester

- Strength changes?
- No Coefficient of Thermal Expansion (CTE) changes above ~300°C
- Irradiation creep (when under stress)

Fast Neutron Damage

MANCHEST

The University of Mancheste

- Thermal reactor neutron energies up to 10MeV, average 2MeV
- About 60eV to permanently displace a carbon atom from the lattice
- Most damage due to fast neutron energies > 0.1 MeV
- Cascade caused by primary and secondary knock-ons
- Interstitial and vacancy loops are formed
- Size of loops depends on irradiation annealing
- Change in crystallite behaviour at an irradiation temperature of about 250°C
- A measure of damage is irradiation "dose" of "fluence" units:
- displacements per atom "dpa"
 - n/cm² Equivalent DIDO Dose (EDND)
 - n/cm² with energies greater than 0.18MeV (En>0.18MeV)
 - nvt neutron velocity time

MANCHESTER 1824

Formation of interstitial and vacancy loops

MANCHESTER 1824

Irradiation defects in graphite crystals (HOPG)

(x 20,000)

Perpendicular

to basal plane

650°C

35

40

45

30

Dose n/cm² x 10²⁰ EDND

MANCHESTER 1824

TEM: In situ heating

Upon heating, a gradual closure of cracks was observed because of the thermal expansion of the graphite crystallites surrounding the cracks.

TEM In situ electron irradiation

Closure of a crack in Gilsocarbon after In-situ electron irradiation. The feature with bright contrast does not disappear completely. Note a small part of crack (indicated by arrow), which was covered by the electron beam has not closed completely

MANCHESTER

Radiolytic Oxidation

- Two types of oxidation can occur in CO₂.
 - Thermal oxidation is a purely chemical reaction between graphite and CO_2 .
 - Reaction is endothermic, is negligible below about 625°C and is not important up to 675°C.
 - Only an issue for HTRs

MANCHEST

The Universit of Manchest

- Radiolytic oxidation occurs when CO₂ is decomposed by fast neutron and gamma radiation (radiolysis) to form CO and an active oxidising species which attacks the graphite porous structure.
 - Radiolytic oxidation occurs predominantly within the graphite pores.
 - Overall component geometry stays essentially the same

Radiolytic Oxidation

- The mechanism of radiolytic oxidation is:
- Gas Phase
- CO_2 -----radiation ----> $CO+O^3$
- $CO+O^*$ -----> CO_2
- **Graphite Pore Surface**
- O*+C----> CO
- Definition
 - G_{-c} is the number of carbon atoms gasified by the oxidising species produced by the absorption of 100eV of energy in the CO₂ contained within the graphite pores.

Oxidising

species

MANCHESTER

Irradiation Damage in Polycrystalline Graphite

- Crystal changes modify polycrystalline dimensions and properties through the microstructure
 - Stored Energy Only significant below 150°C, negligible at 350°C
 - Dimensional changes
 - CTE

MANCHESTER

- Young's modulus
- Strength
- Thermal conductivity
- Irradiation creep (when under stress) —
- Radiolytic oxidation further modifies these properties
- Semi-isotropic graphite is considered in the next section •

Graphite Irradiation Behaviour – Isotropic Gilsocarbon irradiated at 550°C

MANCHESTER

Jniversi

Transverse direction

Shrinkage of CSF Graphite Irradiated at 800°C to various Irradiation Doses

Gilsocarbon Dimensional Changes

The University of Manchester

Gilscarbon Dimensional change

Mrozowski cracks

Dose n/cm² EDND x 10²⁰

Unirradiated Gilsocarbon Specimens 7mm lop-1 Swelling m di Swelling Gilsocarbon Gilsocarbon particles particles 285 x 10²⁰ n/cm² **EDND** $+0.9\% \Delta V/V_{o}$

Gilsocarbon irradiated to 271 x 10^{20} n/cm² EDND 33% $\Delta V/V_o$

Gilsocarbon Coefficient of Thermal Expansion

MANCHESTER

The University of Manchester

MANCHESTER

Gilsocarbon Thermal Resistivity

MANCHESTER

Gilsocarbon Change Young's Modulus **Modulus**

Gilsocarbon Young's Modulus

Dose n/cm² EDND x10²⁰

Reduction in properties due to radiolytic oxidation

MANCHESTER

The Univ of Manc

> •The black symbols are drilled specimens indicating the loss of section is a major factor

Irradiation Creep in Graphite

- Due to fast neutron irradiation
- Significantly reduces stresses in nuclear graphite components
- Definition \bullet

MANCHESTEI

 The difference in dimensions between a stressed sample and a sample having the same properties as that sample when unstressed

Dimensional Change Under Load

Example ATR-2E Graphite

- Under compressive load shrinkage is increased
 - Upper right
- Under tensile load shrinkage is decreased
 - Lower right
- There is also a lateral (Poisson's) effect
 - Below

DIMENSIONAL CHANGES OF ATR-2E AT 500°C UNDER COMPRESSIVE LOAD

DIMENSIONAL CHANGES OF ATR- 2E AT 500°C UNDER TENSILE

Irradiation Creep Curves Example ATR-2E (500°C)

 Irradiation creep curve can be simply obtained by subtraction of the unloaded dimensional change curve from the crept dimensional change curve

MANCHESTER

Jnivers

- However, for assessments this would require data for a range of temperatures and fast neutron fluence covering all the expected conditions.
- In addition changes to the Coefficient of Thermal Expansion (CTE) and Young's modulus have been observed.

Issues to consider

Properties

MANCHESTER

The Universit of Manchest

- thermal conductivity
- thermal shock resistance
- modulus of elasticity
- tensile strength
- CTE
- dimensional change & irradiation creep
 - initial compressive stress
- Protons versus neutrons
 - dose rate effect (pulsed versus continuous)
 - helium production
- POCO
 - historical experience