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Magnet Components

Dominated by SS Structure



Magnet Components



Conductor Components

Superconductor and Copper Cable

316 LN SS or Ni alloy jacket (conduit)



Jacket: SS or Ni Alloy

High RRR Copper

Nb,Sn



Radiation Effects on Conductors

« Superconductor Material
« Copper Stabilizer Material

 |nsulation Materials
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Superconductor Materials

Low Temperature Superconductors (LTS)
* NDbTi alloy typically for PF coils

* A15 Compounds: e.g. Nb;Sn for TF Coils
— With or without alloying (Ti or Ta additions)

— (NDbsAl and Nb;Ge considered but not commercially
developed)

High Temperature Superconductors (HTS)

« BSCCO compounds — considered not suitable for
large scale fusion applications

* Rare Earth (ReBCO) Compounds: e.g. YBCO,
GdBCO



Superconductor Materials — LTS
Nb,Sn

« Significant (and later on drastic) effects on T,
— caused by disorder

» Significant enhancements of J_ (followed by a

precipitous drop)

— increase caused by an increase of H_, - mean-free-path-
effect
— drop caused by the T_ degradation

« Results typical for materials with a high degree of
order



Reactor Fluence Levels vs. Nb,Sn J_/J_,

10° Rad, insulation limits design >10'" Rad, sc limits design
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Nishimura, NIFS



Neutron Degradation of T_, A15’s and YBCO

SLHC Cos D1
— T
= 10— N ~Nb
TCO . *U.e ~ X v x
o
08t ~ \Nb Ti
) +¥Xa0 YBCO film
© Nb,;Ge v
06F = Nbs Al i
© Nb;Sn RPD Allowablg¢
O.L — + v3 Si + O _
v \
0.2 I~ 2\%-_ A . Y
ITER Allowable
0 l—/F | ] 1 1 1
anl? ani8 an1d an20 an2i ARIES-AT

A4

Fast- neutron fluence (n/cm?)

* All A15's have same T /T, degradation vs. fluence
»1-2 orders of magnitude more sensitive than NbTi

* YBCO films have faster T /T, degradation than A15's



HTS make much higher magnetic fields accessible
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YBCO Tape (29 Generation-HTS)
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Critical currents in YBCO bulk
superconductors at 77 K
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YBCO bulk
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fast neutron fluence (16" m?)



YBCO Bulk



Copper Stabilizer

« Experiments on copper

* |rradiation must be done at low
temperature (~ 5 K)

— (no facilities for irradiation at cryogenic
temperatures today)



Copper Stabilizer



Insulation Materials

* Presently employed glass-fiber reinforced
epoxies degrade at the ITER fluence level

* Novel cyanate esters may not withstand the
DEMO fluence level!

* New research efforts needed



Insulation Materials
(Data Required After Irradiation)

« Tensile Strength

« Compression Strength

« Shear Strength

— INTRAlaminar Shear: Crck propogation
— INTERIlaminar Shear

e Pulsed Operation::

— Fatigue

« Additional Property Changes:
— Swelling

- Weight Loss

» Dielectric Strength



Tensile Tests of Unirradiated and Irradiated ALSTOM ITER Samples

Fracture at 77 K before and after irradiation
to fast neutron fluence of 1x 10?> m= (E>0.1 MeV)
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ILSS (MPa)
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Shear Strength vs. Neutron Fluence
Imide & Cyanate Ester Hybrids

Preliminary Radiation Results for Cyanate Ester Hybrids



Gas Evolution Rates of Epoxy Resins

" Resin/Hardener MNA
(anhydride)
(cm3/g-
MGy)
DGEBA 1.35
1.23
DGEBF
TGPAP
:.Prepreg/FiIm Hardener
TGDM Anhydride

Bismaleimide (CTD-220P)

Polyimide (Kapton)

MTHPA
(anhydride)

(cm3/g-
MGy)

1.38
1.27
1.08

1.03
1.19
1.1

Gas Evolution
Rate

(cm3/g-MGy)
0.4
0.32

0.09

DDM DETD
(aromatic (aromatic
amine) amine)
(cm3/g- (cm3/g-
MGy) MGy)
0.32 0.57

0.58
0.58

[

Most options the same
to within x 2

Aromatics, imides
better; no CE data

Kapton best

p~1.2 g/ce
®~0.22 Mgy
D ~2.9 Mgy
D ~223 Gy

R~0O(1) (cm3/g-
MGy)

Vgas’
TF ~2.4 cc/cc
Vgas’
CS ~182 cc/m3

lifetime,

lifetime,

Vgas,TF large
Vgas,CS small



Swelling (%)
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Additional Characterizations

SWELLING AND WEIGHT LOSS (Graphs are for DGEBA)

Laminate
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Neutron Fluence (rﬁz, E>0.1MeV)

Formation of bubbles inside the laminate after
irradiation @ 1x1022 m-2(E>0.1 MeV)



High Performance Electrical Insulator Needed
for Extended High Q Operation

Insulation Superconductor
Near-term 107 Gy x 50 MPa 1,000 A/mm? (12 T, 4.2 K), 3 x 1021 n°/
2
m
Long-term 102 Gy x 500 MPa 1,000 A/mm? (12 T, 77 K), 1.5 x 1023 n®/
2
m

1. Better insulations being developed
2. Strong influence of structural concept

3. Superconductors can be weak link



High Current Conductors Required for Fusion Magnets

Typical Large Scale Cable-in-Conduit
Conductor (CICC) _ _
 High Currents Required to

Limit Coil Inductance and
Dump Voltage for Quench
Protection

40 kAat13T,4.5K

ITER TF coils (N*1 = 9.1 MA, L = 0.349 H)

Conductor Number of  Inductance Discharge voltage Discharge time constant

current turns ratio L/L 1gx (tp =12 s) (Up = 10 kV)
68 kA 134 1 3.5 kV 4s

30 kKA 304 S 17.5 kV 21s

10 kA 910 45 158 kV 190 s
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Twisted Stacked Conductor Concept
With YBCO HTS Flat Tapes

Supercon, Inc.
Phase | SBIR
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e
HTS Conductors Could Make Demountable Joints

Possible

Case A Case B Case C
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Summary

Demo and commercial fusion reactors will not be built with
1990°'s ITER technology

— We can't afford to wait 20-30 years and then try to catch up

Advanced superconducting technology is critical to
development of a reliable and economical fusion reactor

— Need intensive HTS high current, high field conductor
development

Significant further R&D of radiation tolerant insulation systems
must be pursued

Can radiation resistance of superconductors be improved?

New facilities are required including ability to irradiate at
cryogenic temperatures

— Ideally perform mechanical tests at low temperature



