Cooling Design of Shielding at MOMENT

Jianfei Tong, Qingnian Xu, YuanYe, Binzhou, Tianjiao Liang

August 11, 2015

Insititue of High Energy Physics, CAS

Outline

- 1. Introduction
- 2. Heat Deposition Calculation
- 3. Cooling Structure Design & CFD Analysis

2.1 Heat deposition: Calculation Model of Fluka

Stainless steel 304: Fe 0.6775, Si 0.01, Mn 0.02, Cr 0.19, Ni 0.0925, N 0.01. Aluminum Alloys 6061:Al 0.9725, Si 0.006, cu 0.002, Mg 0.01, Zn 0.0025, Mn 0.0015, Ti 0.0015, Cr 0.002, Fe 0.0035. Nb3Sn: Nb 0.482, Cu 0.518. NbTi conductor: polyimide 0.079(polyimide C6H11ON,Density1.41g/cc), Al 0.731, Cu 0.09, NbTi 0.1 Mecury: Density 13.534 g/cc Tungsten: Density 19.3 g/cc

2.2 Heat deposition: Results

Heat deposition for Proton beam power = 15 MW

- Proton: 1.5 GeV, 10 mA
- Target: Hg Length=300 mm, R=5 mm
- Shielding: Tungsten
- Heat load on Shielding: 9.9 MW Max volumetric heat source=2.2x10⁸[W m^-3]

3.1 Cooling Structure Design Criterion

- 1. For the shielding material density should be as high as possible, which reduce the heat load on superconducting magnets, the total volume of cooling channel can reduce the density of shielding and should be as small as possible;
- 2. It's not a good choice of cooling channel face to magnet, or along the radius direction, for the particle jet effect; The coolant passing through the shielding from front to rear also can prevent the irradiation damage on magnets;
- 3. Multiple rows of Mini-Channel with reasonable size can increase the heat transfer area and prevent decreasing the density too much. For the possessing difficulty of the tungsten, the channel should be as simple as possible;
- 4. For the high volumetric heat in shielding, the cooling channel should be designed to keep the shielding in demand especially near the target.

3.2 Coolant choice

- 1. Water : good choice, inexpensive, high thermal conductivity, high material density, tungsten has to be cladded by tantalum
- 2. Helium : alternative choice, expensive, no new nuclide, tungsten no need cladded by tantanlum
- 3. Liquid metal (difficulty to deal with new generation of nuclides)

	Heat Condutivity (W /m-K)	Special Heat Capacity (J/kg-K)	Visousity (Pa/s)	Density (kg/m ³)
Water	0.6069	4181.7	8.899e-4	997
Helium@1atm 300K	0.1415	5240	1.86e-05	0.179
Helium@3Mpa 300K	0.158	5191	2.01e-05	4.78

Water: Max velocity 5 m/s; Goal: max temperature of water below 150 °C (keep in liquid phase), max temperature of tungsten below 800 °C Helium : Max velocity 100 m/s; Goal: max temperature below 800 °C

3.4 Government Equation & Calculation Software

Finite Volume Method

Software: Ansys CFX

 S_{E} heat source

3.5 Calculation Model in CFX

3.6 Heat source in CFX

3.7 Results: case 1, water, 5 m/s

Pressure Drop= 0.8 MPa

Outlet T=311.7 K Δ T=11.7 K

Mass flow rate=7X997 kg/m³*5 m/s*0.0001 cm²=3.49kg/s

Total mass flow rate @ Shielding=206kg/s=744 m³/h

3.8 Properties of Helium

散裂中子源 China Spallation Neutron Source

3.9 Comparison of Pressure: case 1, Helium, 100 m/s

散裂中子源 China Spallation Neutron Source

3.10 Comparison of veolicity: case 1, Helium, 3Mpa

Page 15

CSNS CHINESE ACADEMY OF SCIENCES

 散裂中子源 China Spalla⁺⁻⁻⁻ [●]------

Temperature

494.0

3.11 Comparion of Case 1 & Case 2: Water, 5m/s

- For the high heat conductivity of water, the maximum temperature values of shielding and water in Case 1 and Case 2 are nearly same, but the temperature distribution is slightly different.
- The first wall thickness (position of No.1 channel) determines the maximum temperature, in this study, we use 1 cm.

Case 2

Case 1

A - A

[K]

散裂中子源 China Spallation Neutron Source

3.12 Comparion of Case 1 & Case 2: Helium, 100m/s, 3Mpa

Mass flow rate= 0.29879 [kg s^-1] Total flow rate @Shielding=17.92kg/s

The maximum temperature of shielding in Case 2 is higher than Case 1 at current conditions. The cooling channel distribution effect can not be ignored due to cold helium.

Conclusion

- From the Fluka calculation, the total heat load of shielding is about 10 MW and the maximum volumetric heat is above 100 W/cc, which is a challange work for cooling design.
- Multiple Rows of Mini-Channel(MRMC), the shape of which is like a fold line to remove the highest volumetric heat, with reasonable channel size(1 cmX1 cm) and first wall thickness(1 cm), and the cooling direction of channel from front to rear, are premiliary ideals in the cooling structure design, and can minimize irradiation demage to magnets.
- For the corrosion in high temperature, tungsten should be cladded with tantalum, and the coolant water should be kept in single phase, the velocity should be very high.
- With MRMC and low first wall thickness, helium is a good coolant choice with high pressure and high velocity.
- Different channel distributions with constant first wall thickness has a different effects on the maximum temperature of shielding based due to the coolent thermal properities.
- It is possible to remove the high heat load and high volumetic heat on shielding at MOMENT using water or high pressure helium with MRMC.

Thank you for your attentation