Chicane Beam Dynamics

David Neuffer

August 14, 2012

Bent solenoid chicane induces vertical dispersion in beam

- bend out 5m, 12.5°
- Single chicane will contain both signs
 - Opposite signs have dispersion in opposite sense
- Little disruption to the central beam
- High momentum particles scrape
- Subsequent proton absorber to remove low momentum protons
 - Non-relativistic protons don't have much energy, even for relatively large momenta (~10cm Be)

Front End with Absorber-Rematch

- > with absorber
 - particle 1-270 MeV/c
 - particle 2-185 MeV/c
 - absorber at 29m
 - 10cm Be
 - particle 1-237 MeV/c
 - particle 2-144 MeV/c
 - Bunch N=10
 - Rotate N=10.04
 - Cool -201.25MHz
 - p_{ref}=230 MeV/c

> ICOOL version

- 2 Bent Solenoids 10m
- **5m**, 1.5T, 12.5°, 0.27GeV/c
- **5m**, 1.5T, -12.5°, 0.27GeV/c
 - bend radius is 22.92m (1/r=0.043636)
 - B_y=0
- Match to channel
 - add 1m drift

ICOOL BSOL element:

SREGION ! bentsol 5.0 1 1e-2 1 0. 1.0 BSOL 1 1.5 0.0 1 0.27 0.0 0.043636 0.0 0.0 0.0 0. 0. 0. 0. 0. 0. VAC NONE 0. 0. 0. 0. 0. 0. 0. 0. 0.

Equations of motion and solution

> Equations of motion:

x'' = h + by'y'' = -bx'

- proton absorbe bend bend target station $\pi^-, \mu^ \pi^+, \mu^+$ bend taper
- **b**= **B**_o /**B**p and h=1/R; R= 22.918m, B₀=1.5T, **B**p (T-m) = p (*GeV/c*)/0.3 $y(s) = C_1 - \frac{h}{b}s + \frac{h}{b^2}\sin(bs) + C_2\frac{1}{b}\sin(bs) + C_4\frac{1}{b}(\cos(bs) - 1)$ $x(s) = C_3 + \frac{h}{b^2}(1 - \cos(bs)) + C_2\frac{1}{b}(1 - \cos(bs)) + C_4\frac{1}{b}\sin(bs)$

> $C_1=y(0), C_2=y'(0), C_3=x(0), C_4=x'(0)$

$$y(s) = -\frac{h}{b}s + \frac{h}{b^2}\sin(bs); x(s) = \frac{h}{b^2}(1 - \cos(bs)); s < 5m$$

$$y(s) = -\frac{h}{b}s_0 + \frac{h}{b^2}\sin(bs_0) + \frac{h}{b}s - \frac{h}{b^2}\sin(bs) + \frac{h}{b}\cos(bs_0)\frac{1}{b}\sin(bs) + \frac{h}{b}\sin(bs_0)\frac{1}{b}(\cos(bs) - 1)$$

$$x(s) = \frac{h}{b^2}(1 - \cos(bs_0)) - \frac{h}{b^2}(1 - \cos(bs)) + \frac{h}{b}\cos(bs_0)\frac{1}{b}(1 - \cos(bs)) + \frac{h}{b}\sin(bs_0)\frac{1}{b}\sin(bs),$$

5<s+s₀<10m; s₀=5m

reference particles in chicane

> x deviation

- p=0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8 ,0.9
- y deviation
 p=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

More reference particles

> x motion

p=0.05, 0.1, 0.15, 0.2, 0.25, 0.3, __0.20 0.35, 0.4

> y motion

p=0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4

- > vertical dispersion
 - D=-h p s /(0.3B₀)
 - s<s₀
 - D=h p (s- s_0) /(0.3B₀)
 - s₀<s<2s₀
- > oscillatory motion
 - period is $\Lambda = 2\pi p/(0.3B_0)$
 - initial amplitude is
 - $A=hp^2/(0.3B_0)^2$

Chicane + absorber

> Chicane effect:

- P > ~500MeV/c are lost
- P < ~500MeV pass through</p>
 - displaced by ~1.1m
- Nominal Path length increased by only 8cm
 - orbits perturbed

> absorber effect

- removes low energy particles
 - designed to remove protons
- distorts energy distribution
 - energy phase-rotation distorted; must be rematched

Compare-absorber vs absorber+chicane μ

This compares absorber only (10cm Be) to chicane (BSOL) + absorber

