Muon Collider Workshop -BNL Front End Studies International Design Study & Muon Collider

> David Neuffer *FNAL*

(December 8, 2009)

Outline

- Front End for the Neutrino Factory/MC
 - Concepts developed during study 2A
- \succ Concern on V_{rf}' as function of B_{sol}
- > Need baseline design for IDS
 - need baseline for engineering study
 - ~lower fields; medium bunch length

New Results

> Insulated rf lattice

- recent results show similar insulated/uninsulated simulation results
- Shielded rf cooling channel

- Front End with reduced rf/B requirements
- > Front End Cooling
 - "snake"
 - match into HCC

- > Change reference B-field to 1.5T
 - constant B to end of rotator
- > changing to $n_B = 12^{\circ}$ example
 - A bit longer than $n_B = 10$
 - optimize with lower fields
 - V'_{rf} < 12 MV/m
- Will see if we can get "better" optimum

$\frac{1}{2}$ High-frequency Buncher and φ -E Rotator μ

- > Drift $(\pi \rightarrow \mu)$
- > "Adiabatically" bunch beam first (weak 320 to 232 MHz rf)
- ▷ Φ-E rotate bunches align bunches to ~equal P (233MeV/c)
 - 232 to 202 MHz, 12MV/m
- > Cool beam 201.25MHz

Parameters of candidate release

> Initial drift from target to buncher is 79.6m

- 18.9m (adiabatic ~20T to ~1.5T solenoid)
- 60.7m (1.5T solenoid)

> Buncher rf - 33m

- 320 → 232 MHz
- $0 \rightarrow 9 \text{ MV/m}$ (2/3 occupancy)
- B=1.5T

> Rotator rf -42m

- 232 → 202 MHz
- 12 MV/m (2/3 occupancy)
- B=1.5T
- > Cooler (50 to 90m)
 - ASOL lattice, P₀ = 232MeV/c,
 - Baseline has 15MV/m, 2 1.1 cm LiH absorbers /cell

progression through system

- Vary buncher/rotator gradients from baseline to explore sensitivity to gradient limits.
 - same baseline cooling channel (16MV/m, 1.15cm LiH)
 - 15 MV/m -> 1.1cm Li H

Somewhat less sensitive than previous

Buncher / Rotator	0/0	3/6	4/7	5/8	6/9	7/10	8/11	9/12	10/ 13	11/ 14
µ/8GeVp at 240m (×10)	.136	.508	.686	.753	.797	.800	.831	.857	.821	.839
										9

rf requirements

> Buncher

- 319.63, 305.56, 293.93,285.46, 278.59, 272.05, 265.80, 259.83, 254.13, 248.67, 243.44, 238.42, 233.61 (13 f)
- ~100MV total

> Rotator

- 230.19, 226.13, 222.59, 219.48, 216.76, 214.37, 212.28, 210.46, 208.64, 206.90, 205.49, 204.25, 203.26, 202.63, 202.33 (15 f)
- 336MV total
- > Cooler
 - 201.25MHz -up to 75m ~750MV

Plans etc.

Move toward "realistic" configuration

- More realistic B-field
 - B= 1.5T -> coil-based fields
- add Be windows
- smaller number of rf frequencies

> Set up design for cost algorithm

- rf cavity design (pillbox, dielectric)
- rf power requirements
- Magnet design

Continuing front end IDS design study

- C. Rogers, G. Prior, D. Neuffer, C. Yoshikawa, K. Yonehara, Y. Alexahin, M. Popovic, Y. Torun, S. Brooks, S. Berg, J. Gallardo ...
- Fermilab meeting (July)
- ~Biweekly phone Conference
- Meeting at RAL
 - December 14-18
- April at Fermilab (IDS meeting)

FIG. 9. (Color) Schematic of a cell at the beginning of the phase rotator section.