Bunch trains for Neutrino factory/ Collider

David Neuffer

November 2013

- > Front End
- > "Muon Collider" versions
- ≻ 325 MHz
- > Add Chicane/Absorber
 - rematch

Fermilab PIP X 4

- Linac, Accumulator, Compressor run at 15 Hz – 4 bunches
 - bunches at 60 Hz
 - 4 bunches
 - 1 bunch at time into neutrino factory
 - 1 μ^+ and 1 μ^- batch per cycle
 - 60 Hz neutrino factory
 - Without trombone
 - 60 Hz single p bunch for collider
 - With trombone
 - 4→1 15 Hz bunches for collider

325MHz System "Collider"

- 20T→ 2T
- Buncher \triangleright
 - P_o=250MeV/c
 - P_N=154 MeV/c; N=10
 - $V_{rf}: 0 \rightarrow 15 \text{ MV/m}$
 - (2/3 occupied)
 - f_{RF}: 490→ 365MHz

> Rotator

- V_{rf}: 20MV/m
 - (2/3 occupied)
- f_{RF} : 364 \rightarrow 326MHz
- N=12.045
- $P_0 P_N \rightarrow 245 \text{ MeV/c}$
- > Cooler
 - 245 MeV/c
 - 325 MHz
 - 25 MV/m
 - 2 1.5 cm LiH absorbers /0.75m

Simulation Results

Simulation obtains

- ~0.125 µ/p within acceptances
- with ~60m Cooler
- shorter than baseline NF

> But

- uses higher gradient
- shorter than baseline NF
- 325 MHz less power
- more bunches in bunch train

325 Collider w/Updated Chicane/Absorber

ICOOL results

- 325 "muon collider" with chicane absorber
 - with added drifts between chicane and absorber
 - ~30m
 - ~0.12 µ/p → ~0.1 µ/p
 - smaller emittance beams
 - scraped to better fit

325 (w chicane/absorber)

- > ~60 m long bunch train
 - ~60 325 MHz buckets
- For collider choose "best 21 bunches "
 - (~19m)
- Includes ~2/3 of captured µ's
 - many are lost
- > 21bunches are recombined to 1 in collider scenario
 - It is more difficult to recombine 21 than 12
- Would like to extend acceptance or generate shorter train

- > NERSC does not work (for me)
- Batch Jobs submitted "run" using no time, no output, no useful diagnostics
 - has run properly a couple of times
- > Hidden UNIX system feature?

#PBS -q regular #PBS -A map #PBS -1 mppwidth=192 #PBS -1 walltime=00:07:00 cd \$PBS_0_WORKDIR aprun -n 192 /project/projectdirs/map/Codes/ICOOL/mpi/bin/icool-332-mpi-00

> Are studying 325 MHz version (~Collider)

- produces more bunches in same length bunch train than 200 MHz
- requires more bunches to be recombined ~12 \rightarrow 21
 - more difficult ... ?
 - HCC recombiner ?
- Are including chicane/absorber
- Would like to fit more µ in fewer bunches

Weekly Summary

