Front End – present status

David Neuffer

March 3, 2015

Outline

Front End for Muon Collider/ Neutrino Factory

- Baseline for MAP
 - 8 GeV proton beam on Hg target
- 325 MHz
 - With Chicane/Absorber

Current status

- New targetry
 - 6.75 GeV on C target
- New Mars generated beams
 - Mars ouput much different from previous version

325MHz System "Collider"

- > Buncher
 - P_o= 250 MeV/c
 - $P_N = 154 \text{ MeV/c}; N = 10$
 - $V_{rf}: 0 \rightarrow 15 \text{ MV/m}$
 - (2/3 occupied)
 - f_{RF}: 490→ 365 MHz

- V_{rf}: 20 MV/m
 - (2/3 occupied)
- f_{RF}: 364 → 326 MHz
- N = 12.045
- $P_0 P_N \rightarrow 245 \text{ MeV/c}$
- > Cooler
 - 245 MeV/c
 - 325 MHz
 - 25 MV/m
 - 2 1.5 cm LiH absorbers /0.75m

Simulation Results

- ~0.125 µ/p within acceptances
- with ~60 m Cooler
- 325 MHz less power
- shorter than baseline NF

> But

- uses higher gradient
- higher frequency rf → smaller cavities
- shorter than baseline NF
- more bunches in bunch train

New Proton Driver parameters

CM

 1.60×10^3

> 6.75 GeV p, C target 200 • $20 \rightarrow 2$ T short taper ~5 m (previously 15) 100 X. Ding produced particles at z = 2 m using Mars 0- short initial beam > Redo ICOOL data sets to match initial beam -100 ref particles redefined in for003.dat -200 and for001.dat 800 0

Use old FE with new initial beam

> New beam based on Mars 15

- different apertures than baseline scenarion
- ~half of initial beam lost in <6m</p>
 - aperture cut off

- Large amount of secondaries at larger apertures at start
 - Did not see in previous runs because of cut-offs near target
 - Lost at 23 cm aperture used downstream

Mollowing Scott's review of front end

> Use his initial distributions (obtained by X. Ding)

- 8 GeV protons on Hg target
 - + and minus
- 6.75 GeV protons on C target
- Start beam from z =10 m
 - must retranslate into ICOOL reference particles
- Early losses on apertures have already occurred
 - 23 cm apertures

7

ICOOL translation tips

start at "z=10 m"

- (particle time zero is at -1 m; launch point is z = - 1 m.)
- reference particles
 - 250 MeV/c ; 154 MeV/c μ⁺
 - 165.75 MeV ; 81.1 MeV μ⁺
 - time set by 1 m as 6.75 GeV proton + 10 m as μ⁺

01-Feb-2015 X. Ding C 10 m -

0.0 0.250 3.95709E-08 0.0 0.154 4.381345E-08 2

1 1-3 0 4.354479e-008 1.000000e+000 0.03737 0.03656 0 7.861861e-004 2.558375e-002 2.189235e-001 0 0 0

3 1-3 0 3.712592e-008 1.000000e+000 -0.03459 -0.11247 0 1.617131e-001 3.506310e-002 4.670452e-001 0 0 0

6 1-3 0 3.748837e-008 1.000000e+000 0.00304 -0.04460 0 -1.827203e-002 -5.931789e-002 7.809555e-001 0 0 0

10 1 -3 0 3.738523e-008 1.000000e+000 0.07979 0.13944 0 -4.890422e-002 3.733585e-001 1.515145e+000 0 0 0

reference particles set in for003.dat, not In ICOOL for001.dat

REFP 20003 REF2 2000

> ecalc9.for has an error [Better to use ecalc9f.for.]

- 10.e09 should be 1.0e09
 - affects value of L in eV-s
- > After correction can use L to get ε^+ , ε^-
 - $L_m = 0.3L/2/0.10566$ (= $\frac{1}{2}$ of the angular momentum)
 - $\varepsilon_p = (\varepsilon_t^2 + L_m^2)^{1/2}$
 - $\varepsilon^+ = \varepsilon_p + L_m$; $\varepsilon^- = \varepsilon_p L_m$;

- Simulation results
 - Hg target 8 GeV -end of cooling
 - ~0.0756 μ⁺/p; ~0.0880 μ-/p;
 - C target 6.75 GeV p
 - ~0.0613 μ⁺/p; ~0.0481 μ⁻/p;
 - 0.0726 μ⁺/p; ~0.0570 μ⁻/p when multiplied by 8/6.75 to compare beams of the same power.
 - Previous front ends had ~0.1 to ~0.125 μ/p

First simulations results

Progression of beam through system

6.75 GeV p/ C target – 8 GeV Hg

- Simulations capture typically somewhat less than before
 - Big difference in MARS production model
 - MARS Inclusive \rightarrow LAQGSM=1
 - Drop in production for ~8 GeV
 - Are previous MARS simulations that showed an advantage in production for ~8 GeV still true ?
 - IQGSM=0: exclusive CEM (cascade exciton model?) for E < 3 GeV, MARS inclusive for E > 5 GeV, LAQGSM for some special cases. Old MARS default.
 - IQGSM=1: CEM for E < 0.3 GeV, LAQGSM for 0.5 GeV < E < 8 GeV, MARS inclusive for E > 10 GeV. New MARS default.

Add gas-filled rf in buncher/rotator

> 34 - 100 atm equivalent

- 1.14 MeV/m
 - 34 atm
- 3.45 MeV/m
 - 100 atm
- for 34 atm
 - add ~2 MV/m to rf

First tries with ICOOL

- GH₂ in buncher 1 atm
 - no change in capture
- Change to 34 atm by
 - DENS GH₂ 34.0
- Runs OK but
 - reduces capture by 20%
 - mostly from low-E muons
 - shorter bunch train

- Replace vacuum rf with gas-filled rf
 - Also use gas in phase rotator
 - Do Buncher / phase rotation function as well ?
- > Replace initial 4-D Cooler with 6-D cooler
 - Has been initiated by Yuri
 - Would like a reference version to use as acceptance baseline
- Integrate Buncher / Phase-rotation / Cooling
 - more compact system
 - adiabatic \rightarrow snap rotation
- > Transform to general R&D
 - initial beam \rightarrow ???
 - lower B-field, lower energy
 - other uses (mu2e ... LFV expts.

Any questions?

