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Introduction

Proof-of-principle test of a target station suitable for future neutrino factory or

muon colliders. Muon beams are obtained from the decay of pions produced with

intense proton beams intercepted by suitable targets.

A fast extracted high-intensity proton beam intercepts a free mercury jet inside

a normal conducting pulsed 15 T capture solenoid magnet cooled with liquid

nitrogen.

The main objective is the optical observation of the jet target dispersal by the

sudden energy deposition of the beam and the influence of the high magnetic

field on the stability of the jet.

Up to 30 MJ of Joule heating is dissipated in the magnet during a pulse.

A fully automated, remotely controlled cryogenic cooling system of novel design

permits the transfer of nitrogen by the sole means of differential pressures

inside the vessels.
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Experimental Setup

Optical windows and beam-target interaction:

Magnet mated with the Hg injection system:

Beam, target and magnet:

Up to 24-GeV proton beam;

Free Hg jet target moving at 20 m/s;

15 Tesla capture solenoid;

Cooling to LN2 temperature.
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Experimental Setup
Installation:

DVB:

Magnet:

Hg System:
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Experiment Location and Layout

CERN accelerator complex:

TT2/TT2A tunnels of CERN PS:
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Operation
Automated remote control of the complete cryogenic process:

CERN Standard for Slow Controls based on a Schneider Electric PLC TLX Premium 

and a remote PVSS supervision station connected via Ethernet.

Operation Modes:

Cooling of proximity cryogenics;

Magnet cool down;

Emptying of the magnet cryostat;

Magnet pulse;

Re-cooling.
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Operation - Standby
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Operation - Standby
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Operation – Cooling of proximity Cryogenics
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Operation – Cooling of Proximity Cryogenics
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Operation - Cooldown
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Operation - Cooldown
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Operation – Magnet at 80K
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Operation – Emptying of the Magnet Cryostat
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Operation – Emptying of the Magnet Cryostat
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Operation – Magnet Cryostat is Empty
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Operation – Magnet Pulse
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Operation – Re-cooling
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Operation – Re-cooling
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Operation – Re-cooling
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Results – Current Pulse and Energy Input
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Typical magnet current input profile:

Ramp-up: 9s;

Flat-top: 1s;

Ramp-down 5s.
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Results – Temperature Increase for Current Input
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Results – Cooling Cycle

Cooling cycle for a 15T pulse

cooling with LN2
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60 cooling cycles performed.

Average cryostat emptying time is 4min24s.
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Results – LN2 Consumption

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40 45

Energy Input (MJ)

L
N

2
 v

o
lu

m
e
 (

l)

Predicted consumption: 6.2 l/MJ

Experimental consumption: 10 l/MJ
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Jet-Target Interaction

14 GeV/c
1.6*1013 protons/pulse
B-field 5 T

14 GeV/c
1.6*1013 protons/pulse
B-field 5 T

14 GeV/c
1.2*1013 protons/pulse
B-field 10 T

Images were recorded at 2000 frames/second.
Play-back is about 400 times  slower.
Splash velocities up to 60 m/s observed.
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Conclusions

Physics requirements fulfilled:

Established the proof-of-principle of a proposed system for generating an intense muon 

beam;

Hg jet can be injected into a high-field solenoid field without serious consequences;

Disruption of Hg jet is mitigated by high magnetic field;

Increase in threshold for disruption coupled with a delay in the onset of the observable jet 

breakup.

Cooling requirements fulfilled:

Cooling of magnet cryostat with LN2 flow by sole means of differential pressures;

Operation automatisms worked properly;

Magnet cooling cycle time takes 40 minutes;

Cryostat emptying time is 4min24s;

LN2 consumption:

Experimental LN2 consumption is of 10.2 l/MJ (1.64 x more than theoretical estimative);

Average 258 l of LN2 for a 15T shot;

Overnight cooling LN2 consumption: 1.2 kW


