Solid Targets for Neutron Spallation Sources

Eric Pitcher Los Alamos National Laboratory

Presented to: AHIPA Workshop October 20, 2009

Solid spallation targets produce higher neutron fluxes than liquid metal targets

- Neutron flux ~ neutron production density
- Neutron production density ~ mass density
- Mass densities (g/cc):
 - Tungsten: 19.3
 - Liquid Hg: 13.6
 - Liquid Pb-Bi: 10.5
- So long as solid target coolant volume fraction in a tungsten target is less than 30%, solid tungsten targets will generate equal or greater neutron flux than liquid metal targets

A tungsten target with heat flux up to 600 W/cm² can be cooled by water

- For single-phase D_2O :
 - 10 m/s bulk velocity in 1mm gap
 - 70 $\mu\text{A/cm}^2$ beam current density on 4.4-mm-thick W plate produces 600 W/cm² at each cooled face
 - A 1-mm gap cooling each 4.4-mm tungsten plate gives a coolant volume fraction of 19% and an average mass density of 15.9 g/cc
 - Neutron production density of this high-power target is
 - -15.9/13.6 = 17% greater than Hg
 - 15.9 / 10.5 = 51% greater than Pb-Bi

An experiment was conducted to validate the target thermal-hydraulic performance

AHIPA Workshop, Fermilab, October 20, 2009

EST. 1943

Thermal-hydraulic experiments using water coolant confirm heat-transfer correlations

5

AHIPA Workshop, Fermilab, October 20, 2009

Experimental results match test data using Handbook heat transfer coefficient

For both liquid & solid targets, the target lifetime is limited by damage to the target front face

• Experience base:

ISIS (SS316 front face): 3.2×10^{21} p/cm² = 10

SINQ (Pb-filled SS316 tubes): 6.8×10^{21} p/cm² = 22 dpa MEGAPIE (T91 LBE container): 1.9×10^{21} p/cm² = 6.8 dpa LANSCE A6 degrader (Inconel 718): 12 dpa SNS first target container (SS316L): 7.5 dpa

• MTS design, annual dose (70 μ A/cm² for 4400 hours): (T91-clad tantalum front face): 6.9×10²¹ p/cm² = 23 dpa

dpa

Rotating solid targets: What goes around comes around

German SNQ Project rotating target prototype (circa 1985)

- Rotating target distributes:
 - radiation damage to the target front face over larger area

→ longer service life

- Energy deposition over a larger volume, which reduces coolant volume fraction
 - → higher n prod density
- Decay heat over a larger volume
 - possibility to passively cool under design basis accidents

Environment and safety issues: solid vs. liquid

- Decay heat ~ beam power
- Liquid metal targets distribute the decay heat within the total liquid metal volume, typically ~100x larger than solid target volume
 - →liquid metal targets have ~2 orders of magnitude lower decay heat than solid (stationary) targets
- Over the life of the facility, the waste volume is roughly the same for all targets, liquid metal and solid (both stationary and rotating)
- For most countries, the disposal of activated Hg is more challenging than W or Pb

Towards higher beam power: Which is better—more energy or more current?

- Above ~800 MeV, target peak power density increases with beam energy
- Addressed by:
 - Higher coolant volume fraction for solid targets
 - Higher flow rate for liquid metal targets
 - Bigger beam spot

Towards higher beam power: Which is better—more energy or more current?

 If target lifetime and coolant volume fraction is preserved, higher beam current requires larger beam spot

MTS Beam Footprint on Target

Peak neutron flux goes as P_{beam}^{0.8}

Summary

- A water- or metal-cooled stationary solid target is viable beyond 1 MW
 - Solid targets have higher neutron production density than liquid metal targets
 - Replacement frequency is determined by target front face radiation damage, and is therefore the same as for a liquid metal target container if the beam current density is the same
 - A rotating solid target will have much longer lifetime than stationary targets
- Target "performance" ~ (beam power)^{0.8}
 - Does not depend strongly on whether the power increase comes from higher current or higher energy

