Mu2e Production Solenoid Design

V.V. Kashikhin

February 13, 2012

Workshop on Radiation Effects in Superconducting Magnet Materials (RESMM'12)

Mu2e magnet layout

Introduction

3

Production Solenoid (PS) performs the following functions in the mu2e:

- Maximizes muon yield by efficiently focusing secondary pions and subsequent secondary muons towards the Transport Solenoid (TS) system, in the momentum range to be stopped in the stopping target.
	- PS meets this function by supplying a prescribed magnet field profile within a prescribed aperture.
- Provides a clear bore for beam line elements such as the primary production target and secondary particle radiation shield.
- 3 De MA24 Frou autres protepts ign of Est Military 10 be steered into primary 2012 target; allows outgoing proton beam to exit without striking

Requirements

- \bullet Magnetic:
	- Peak field on the axis 5 T ;
	- Axial gradient -1 T/m;
	- 0 Gradient uniformity ±5 %.
- \bullet Electrical:
	- Operating margins: ≥ 30 % in I_c, ≥ 1.5 K in T $_{\rm c}$;
	- Operating current 9÷10 kA;
	- Peak quench temperature [≤] 130 K;
	- Voltage across terminals [≤] 600 V.
- Structural:

- Withstand forces at all conditions while part of the system or stand-alone;
- 0 Cryostated magnet weight ≤ 60 tons;
- 4 CALLES Production Solenoid Design RESMM12 13-Feb-2012 0 Compliance with applicable structural codes.

- Cryogenic:
	- Cooling agent: LHe at 4.6 K;
	- \bullet • Total heat flow to LHe ≤ 100 W;
	- \bullet Cryostat ID 1.5 m;
	- Conduction cooling.
- Radiation:
	- Absorbed dose [≤] 6 MGy total;
	- \bullet Minimum RRR of stabilizer in the operating $cycle \geq 100$.

Magnetic design

Magnetic field

2: Itrim=0, Imain=9200 Surface: Magnetic flux density norm (T) Contour: Magnetic vector potential, phi component (Wb/m)

Load line

Cable parameters

PS cable Dimensions in [mm] Design date: 12/30/2011

Magnet parameters

Magnet stability

- 0 Ability of the magnet to recover from a short-term transition from superconducting to normal state.
- \bullet Characterized by the minimum quench energy (MQE) – the minimum energy deposited in the coil causing the irreversible transition to normal state (quench)
- \bullet In the absence of a strict stability criteria, we chose the MQE to be comparable with other large solenoids that were built and tested:
	- CMS MQE = 620 mJ
	- $\Delta T L \Delta S$ CS MOF = ~400 mJ

Quench protection

- \bullet Adiabatic analysis by QLASA;
	- 0 No quench-back from the structure;
- \bullet The peak coil temperature reaches ~45 K for nondegraded RRR;
- \bullet In case of a factor of 10 RRRdegradation in a short cable segment (worst case):
	- 0 • RRR $_{\mathsf{Al}}$ = 50;
	- 0 • RRR $_{\rm Cu}$ = 10
	- Peak coil temperature < 100 K;
- \bullet Meets the design requirement on the peak coil temperature.

Structural design

Stress criteria

Measured strength of Al-stabilized ATLAS cable.

From A. Yamamoto, et al., "Design and Development of the ATLAS Central Solenoid Magnet," *IEEE Trans. Appl. Supercond.*, Vol. 9, No. 2, June 1999 , pp.852-855.

Maximum allowable stress of Al 5083-O at cryogenic temperatures (<77K). From 2010 ASME BPVC.

- \bullet The maximum allowable stress in the superconducting coils that are supported by the external support structures is the lesser of:
	- 2/3 of the minimum specified Yield Strength;
	- \bullet 1/2 of the minimum specified Ultimate Strength.
- \bullet The measured cable strength data were taken from ATLAS CS cable.
	- 0 The actual PS cable is expected to be stronger because of the lower fraction of Al stabilizer.
- \bullet The maximum allowable stress in the support shells was chosen according to 2010 ASME Boiler and Pressure Vessel Code.

RRR vs. cable strength

Fig.3. 0.2% yield strength as a function of area reduction

14

$300 K - > 4 K$, $I = 0$

- Peak stress in the support structure: 51 MPa;
- Peak stress in the coil: 21 MPa

300 K -> 4 K, $I - > I_{op}$

70

60

50

40

30

20

- Peak stress in the support structure: 96 MPa;
- Peak stress in the coil: 73 MPa

Coil-shell normal stress

Mu2e Production Solenoid Design - RESMM12 13-Feb-2012

Coil-shell shear stress

Displacements

Cold mass

- The coils are assembled inside the support shells made of Al 5083-O;
- Each coil section is individually vacuum-impregnated with epoxy resin;
- \bullet The three coil sections are bolted together during assembly to form a single cold mass;
	- The azimuthal keys lock the sections together.
	- Cold mass dimensions:
		- \bullet $ID = 1.70 m;$

 \bullet

- \bullet $OD = 2.12$ m (ex. cryo/supp.);
- \bullet Length = 4.0 m.

Cryostat

- \bullet The cold mass is internally supported by the suspension system;
- \bullet The loads are transferred to the experiment's floor through the cryostat walls, support posts and iron yoke;
- Mu2e Production Solenoid Design RESMM12 tons). 13-Feb-2012 \bullet The cryostat is designed to support the additional weight of the radiation shield (~50 tons).

Radiation/thermal analysis

Heat and radiation shield

- \bullet Installed within the warm magnet bore;
- \bullet Made from low-conductivity bronze;
- \bullet Protects the superconducting coils from radiation coming from the primary proton target.

MARS radiation analysis

24

See presentation of Vitaly Pronskikh

- \bullet 3D MARS model included all the details of the PS magnet and the radiation shield;
- \bullet The coil properties were approximated as a mixture of the relevant materials.

Cooling system

- \bullet The cold mass is conduction cooled via thermal siphon scheme;
- The support shells are equipped with azimuthal cooling tubes that create the parallel flow paths;
- \bullet The tubes are connected to the upper and lower distribution lines;
- 5 Mu2e Production Solenoid Design RESMM12 $13-5$ cold mass supplies c^{13-5} eb-2012 • A return column not thermally connected to the

li id t th b tt

Coil-flange interface

- 0 Coil envelope is surrounded with the ground insulation:
	- \bullet • 2x250 μ m of composite insulation (2x25 μ m of Kapton, fiberglass balance);
- \bullet Thermal bridges at the inner and outer surfaces;
- 0 Metal to metal connection between thermal bridges and plates;
- 0 Thermal plates are stress-relieved at the corners of the support shells;
- Layers of mica between the thermal plates, flanges and shells.
26 Mu2e Production Solenoid Design RESMM12

Thermal model

T_0 =4.6 K, static+dynamic heat load

- 0 Peak coil temperature at the max performance is 4.803 K;
- 0 Azimuthally non-uniform distribution.

- Mu2e Production Solenoid Design RESMM12 13-Feb-2012
- \bullet Peak coil temperature at the min performance is 4.807 K;
- \bullet Azimuthally non-uniform distribution.

Thermal parameter space

- \bullet The thermal models are identical: same geometry, boundary conditions and heat sources;
- \bullet The only difference is the material of cable stabilizer and thermal bridges/plates (Al or Cu, RRR=100);
- \bullet The difference in thermal performance is due to the change of densities and thermal conductivities.

Summary

- The PS magnet design meets the requirements;
- It offers a flexibility in adjusting the peak axial field and gradient;
- Conservative margins are built in;
- Al stabilizer offers an advantage over Cu for the selected magnet technology and radiation environment.