Mu2e Production Solenoid Design

V.V. Kashikhin

February 13, 2012

Workshop on Radiation Effects in Superconducting Magnet Materials (RESMM'12)

Mu2e magnet layout

13-Feb-2012

Introduction

Production Solenoid (PS) performs the following functions in the mu2e:

- Maximizes muon yield by efficiently focusing secondary pions and subsequent secondary muons towards the Transport Solenoid (TS) system, in the momentum range to be stopped in the stopping target.
 - PS meets this function by supplying a prescribed magnet field profile within a prescribed aperture.
- Provides a clear bore for beam line elements such as the primary production target and secondary particle radiation shield.
- Made Owe ut a protect beam to exit without striking

Requirements

- Magnetic:
 - Peak field on the axis 5 T ;
 - Axial gradient -1 T/m ;
 - Gradient uniformity ±5 %.
- Electrical:
 - Operating margins: ≥ 30 % in I_c,
 ≥ 1.5 K in T_c;
 - Operating current 9+10 kA;
 - Peak quench temperature ≤ 130 K;
 - Voltage across terminals ≤ 600 V.
- Structural:
 - Withstand forces at all conditions while part of the system or stand-alone;
 - Cryostated magnet weight ≤ 60 tons;
 - Compliance with applicable structural codes.

- Cryogenic:
 - Cooling agent: LHe at 4.6 K;
 - Total heat flow to LHe ≤ 100 W;
 - Cryostat ID 1.5 m;
 - Conduction cooling.
- Radiation:
 - Absorbed dose ≤ 6 MGy total;
 - Minimum RRR of stabilizer in the operating cycle ≥ 100.

Magnetic design

Mu2e Production Solenoid Design - RESMM12

Magnetic field

2: Itrim=0, Imain=9200 Surface: Magnetic flux density norm (T) Contour: Magnetic vector potential, phi component (Wb/m)

Load line

Mu2e Production Solenoid Design - RESMM12

13-Feb-2012

Cable parameters

<u>PS_cable</u> Dimensions in [mm] Design date: 12/30/2011

8

Parameter	Unit	Value		
Rutherford cable				
Strand diameter	mm	1.300		
Number of strands	_	36		
Cable width	mm	23.65		
Cable thickness	mm	2.34		
Critical current density at 5T, 4.2K	A/mm ²	>3000		
Strand Cu/non-Cu ratio	-	0.9		
Initial RRR of Cu matrix	-	>100		
Filament diameter	μm	<30		
Al-stabilized cable				
Bare cable width	mm	30.00		
Bare cable thickness	mm	5.50		
Overall stabilizer/superconductor ratio in the bare cable	-	5.56		
Initial RRR of AI stabilizer	-	>1000		
Cable insulation				
Type: pre-preg Kapton + E-glass				
Pre-preg Kapton thickness	mm	0.1		
E-glass thickness	mm	0.15		

Magnet parameters

Parameter	Unit	3-layer design
Liquid helium temperature (T _{LHe})	К	4.6
Operating current (I _{op})	kA	9.20±0.95
Peak axial field at I _{op}	Т	4.56±0.46
Peak coil field at I _{op}	Т	4.97±0.51
Quench current at T _{LHe}	kA	15.81
Current sharing temperature at I _{op}	К	7.04-6.50
Minumum temperature margin	К	1.50
Maximum allowable temperature (T _{maxall})	К	5.54-5.00
Fraction of SSL at T _{LHe}		0.523-0.642
Fraction of SSL at T _{maxall}		0.628-0.689
Stored energy	MJ	55.15-79.74
Self-inductance	Н	1.58
Peak coil voltage	V	600
Fast dump resistance	mΩ	59.11
Initial time constant of fast discharge	S	26.7
MIITs during current decay	MA ² s	910-1376
Cable length	km	8.67
Cold mass inner diameter	m	1.70
Cryostat inner diameter	m	1.50
Cold mass length	m	4.02
Cryostat length	m	4.50
Cold-mass weight	tonnes	~ 10
Cryostat weight	tonnes	10.7
Axial force on the cold mass (TS=on)	MN	1.28-1.36

Mu2e Production Solenoid Design - RESMM12

Magnet stability

- Ability of the magnet to recover from a short-term transition from superconducting to normal state.
- Characterized by the minimum quench energy (MQE) the minimum energy deposited in the coil causing the irreversible transition to normal state (quench)
- In the absence of a strict stability criteria, we chose the MQE to be comparable with other large solenoids that were built and tested:
 - CMS MQE = 620 mJ

Mu2e Production Solenoid Design - RESMM12

Quench protection

- Adiabatic analysis by QLASA;
 - No quench-back from the structure;
- The peak coil temperature reaches ~45 K for nondegraded RRR;
- In case of a factor of 10 RRR degradation in a short cable segment (worst case):
 - RRR_{AI} = 50;
 - RRR_{Cu} = 10
 - Peak coil temperature
 < 100 K;
- Meets the design requirement on the peak coil temperature.

Structural design

Mu2e Production Solenoid Design - RESMM12

Stress criteria

Measured strength of AI-stabilized ATLAS cable.

From A. Yamamoto, et al., "Design and Development of the ATLAS Central Solenoid Magnet," *IEEE Trans. Appl. Supercond.*, Vol. 9, No. 2, June 1999, pp.852-855.

Material/Property	Temp., K	Al stabilizer	Overall cable
Yield strength, MPa		81	128
Ultimate strength, MPa	300	86	184
Maximum allowable stress, MPA		43	85
Yield strength, MPa		110	147
Ultimate strength, MPa	4.2	294	-
Maximum allowable stress, MPA		73	98

Maximum allowable stress of AI 5083-O at cryogenic temperatures (<77K). From 2010 ASME BPVC.

Thickness, mm	Maximum allowable stress, MPa
1.30 - 38.10	107.6
38.13 - 76.20	101.3
76.23 - 127.00	95.8

- The maximum allowable stress in the superconducting coils that are supported by the external support structures is the lesser of:
 - 2/3 of the minimum specified Yield Strength;
 - 1/2 of the minimum specified Ultimate Strength.
- The measured cable strength data were taken from ATLAS CS cable.
 - The actual PS cable is expected to be stronger because of the lower fraction of AI stabilizer.
- The maximum allowable stress in the support shells was chosen according to 2010 ASME Boiler and Pressure Vessel Code.

RRR vs. cable strength

Mu2e Production Solenoid Design - RESMM12

13-Feb-2012

300 K -> 4 K, I = 0

- Peak stress in the support structure: 51 MPa;
- Peak stress in the coil: 21 MPa

300 K -> 4 K, I -> I_{op}

- Peak stress in the support structure: 96 MPa;
- Peak stress in the coil: 73 MPa

Coil-shell normal stress

17

Coil-shell shear stress

Mu2e Production Solenoid Design - RESMM12

13-Feb-2012

Displacements

Cold mass

- The coils are assembled inside the support shells made of Al 5083-O;
- Each coil section is individually vacuum-impregnated with epoxy resin;
- The three coil sections are bolted together during assembly to form a single cold mass;
 - The azimuthal keys lock the sections together.
 - Cold mass dimensions:
 - ID = 1.70 m;
 - OD = 2.12 m (ex. cryo/supp.);
 - Length = 4.0 m.

Cryostat

- The cold mass is internally supported by the suspension system;
- The loads are transferred to the experiment's floor through the cryostat walls, support posts and iron yoke;
- The cryostat is designed to support the additional weight of the radiation shield (~50 tons). 13-Feb-2012

Radiation/thermal analysis

Mu2e Production Solenoid Design - RESMM12

Heat and radiation shield

- Installed within the warm magnet bore;
- Made from low-conductivity bronze;
- Protects the superconducting coils from radiation coming from the primary proton target.

MARS radiation analysis

24

Parameter	Unit	Value
Peak absorbed dose	kGy/yr	330
Peak power density	μW/g	18
Total CM dynamic heat load	W	21
Peak DPA	1/yr	3.2·10 ⁻⁵

See presentation of Vitaly Pronskikh

- 3D MARS model included all the details of the PS magnet and the radiation shield;
- The coil properties were approximated as a mixture of the relevant materials.

Cooling system

- The cold mass is conduction cooled via thermal siphon scheme;
- The support shells are equipped with azimuthal cooling tubes that create the parallel flow paths;
- The tubes are connected to the upper and lower distribution lines;
- A return column not thermally connected to the cold mass supplies cold

Coil-flange interface

- Coil envelope is surrounded with the ground insulation:
 - 2x250 μm of composite insulation (2x25 μm of Kapton, fiberglass balance);
- Thermal bridges at the inner and outer surfaces;
- Metal to metal connection between thermal bridges and plates;
- Thermal plates are stress-relieved at the corners of the support shells;

• Layers of mica between the thermal plates, flanges and shells. Mu2e Production Solenoid Design - RESMM12

Thermal model

T₀=4.6 K, static+dynamic heat load

13-Feb-2012

- Peak coil temperature at the max performance is 4.803 K;
- Azimuthally non-uniform distribution.

- Mu2e Production Solenoid Design RESMM12
- Peak coil temperature at the min performance is 4.807 K;
- Azimuthally non-uniform distribution.

Thermal parameter space

- The thermal models are identical: same geometry, boundary conditions and heat sources;
- The only difference is the material of cable stabilizer and thermal bridges/plates (Al or Cu, RRR=100);
- The difference in thermal performance is due to the change of densities and thermal conductivities. 13-Feb-2012

Mu2e e

Summary

- The PS magnet design meets the requirements;
- It offers a flexibility in adjusting the peak axial field and gradient;
- Conservative margins are built in;
- Al stabilizer offers an advantage over Cu for the selected magnet technology and radiation environment.