Project-X

RESMM12 Feb 14th 2012

R.Tschirhart Fermilab

Photo: H. Hayano, KEK

-

The Project-X Research Program

Neutrino oscillation experiments

A high-power proton source with proton energies between 8 (3) and 120 GeV would produce intense neutrino beams directed toward near detectors on the Fermilab site and massive detectors at distant underground laboratories.

Kaon, muon, nuclei & neutron precision experiments

These could include world leading experiments searching for muon-to-electron conversion, nuclear and neutron electron dipole moments (edms), precision measurement of neutron properties and world-leading precision measurements of ultra-rare kaon decays.

Platform for evolution to a Neutrino Factory and Muon Collider

Neutrino Factory and Muon-Collider concepts depend critically on developing high intensity proton source technologies.

Nuclear Energy Applications

Accelerator, spallation, target and transmutation technology demonstration which could investigate and develop accelerator technologies important to the design of future nuclear waste transmutation systems and future thorium fuel-cycle power systems.

Detailed Discussion: <u>Project X website</u>

Long Baseline Neutrino Experiment

Minnesota

North Dakota

outh Dakota

tana

21

New Neutrino Beam at Fermilab. Directed towards a distant detector Precision Near Detector on the Fermilab site 33 kT fiducial volume Liquid Argon TPC Far Detector

Kansas

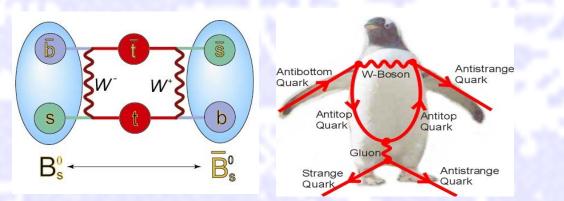
Image NASA © 2008 Tele Atlas Image © 2008 TerraMetrics © 2008 Europa Technologies

Pointer 43°03'56.44" N 95°10'42.53" WStreaming |||||||||

Eye alt 1108.62 km³

Google

Michigan


In

Ontario

Wisconsin

Kaon, Muon and EDM Experiments Deeply Attack the Flavor Problem

Why don't we see the *Terascale Physics we expect* affecting the flavor physics we study today??

-Measures of the "Flavor" problem-Generic couplings in new physics push the mass scale very high.... TeV scale new physics corresponds to highly constrained and tuned couplings of new physics

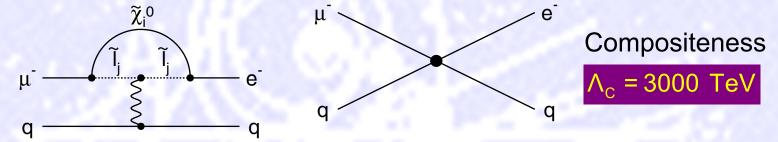
Operator	Bounds on Λ [TeV] ($C = 1$)		Bounds on $C \ (\Lambda = 1 \mathrm{TeV})$		Observables
Operator	Re	Im	Re	Im	Observables
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$1.9 imes 10^3$	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.1×10^2	2.2×10^2	7.6×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	$3.7 imes 10^2$	$7.4 imes 10^2$	1.3×10^{-5}	3.0×10^{-6}	$\Delta m_{B_s}; S_{\psi\phi}$

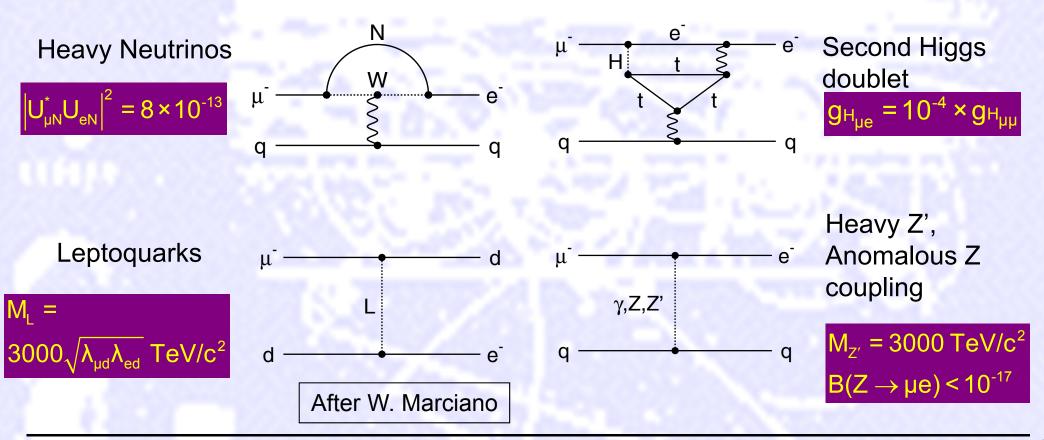
Table 1-1. Bounds on $\Delta F = 2$ operators of the form $(C/\Lambda^2) \mathcal{O}$, with \mathcal{O} given in the first column. The bounds on Λ assume C = 1, and the bounds on C assume $\Lambda = 1$ TeV. (From Ref. [8].)

From the heavy quark working group writeup summarizing the Intensity Frontier Workshop (http://www.intensityfrontier.org/)

In the absence of new facilities enabling new experiments...

From Hitoshi Murayama , ICFA October 2011


New facilities drive the Synergy between Experimental Frontiers to directly confront theory...



Modified from Hitoshi Murayama , ICFA October 2011

Deepest Probe of the Flavor Problem: muon-to-electron Conversion Expt at Project-X

Supersymmetry Predictions at 10⁻¹⁵

Rare processes sensitive to new physics... Warped Extra Dimensions as a Theory of Flavor??

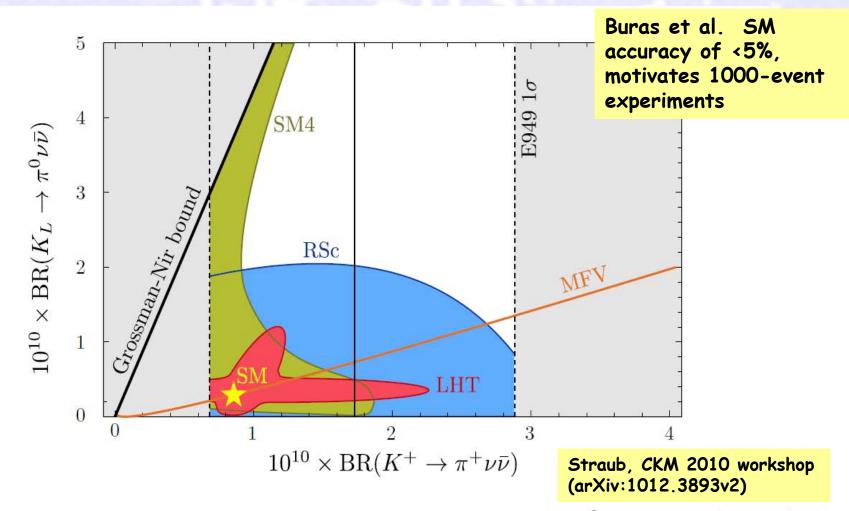
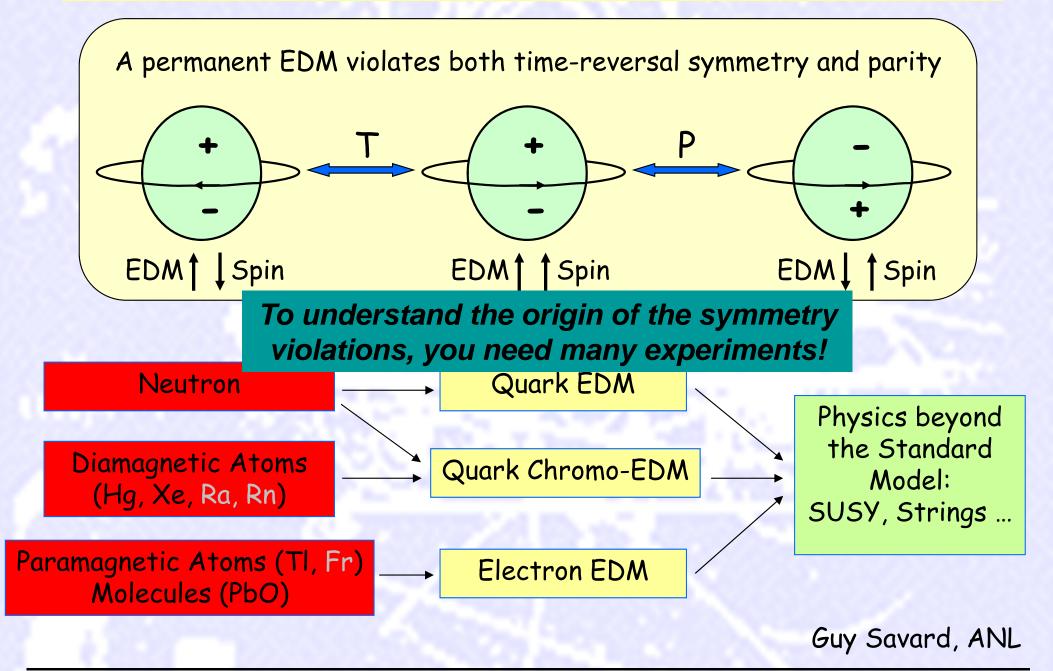
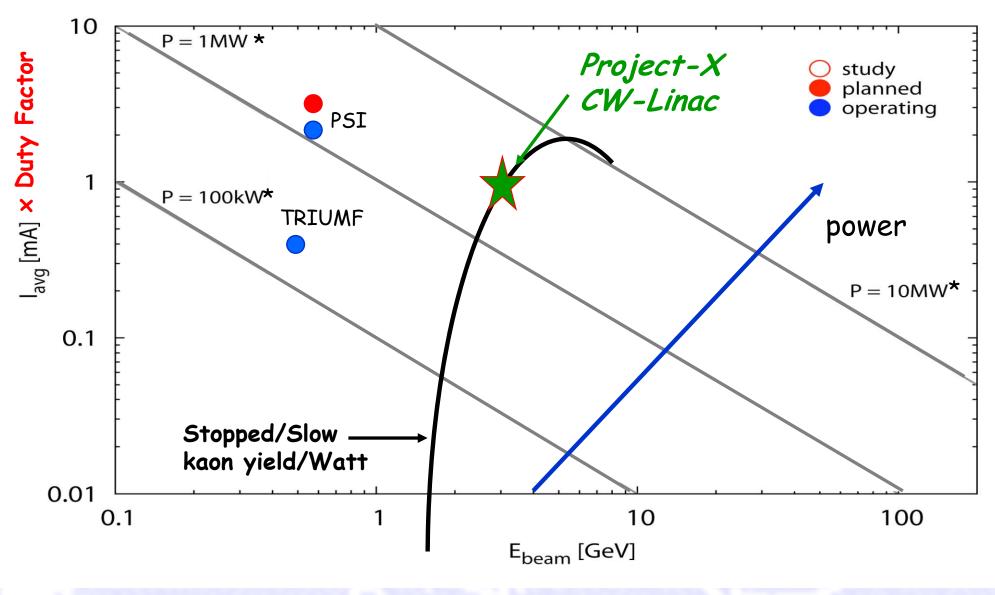



Figure 1: Correlation between the branching ratios of $K_L \to \pi^0 \nu \overline{\nu}$ and $K^+ \to \pi^+ \nu \overline{\nu}$ in MFV and three concrete NP models. The gray area is ruled out experimentally or model-independently by the GN bound. The SM point is marked by a star.

The Quest for Electric Dipole Moments



February 2012

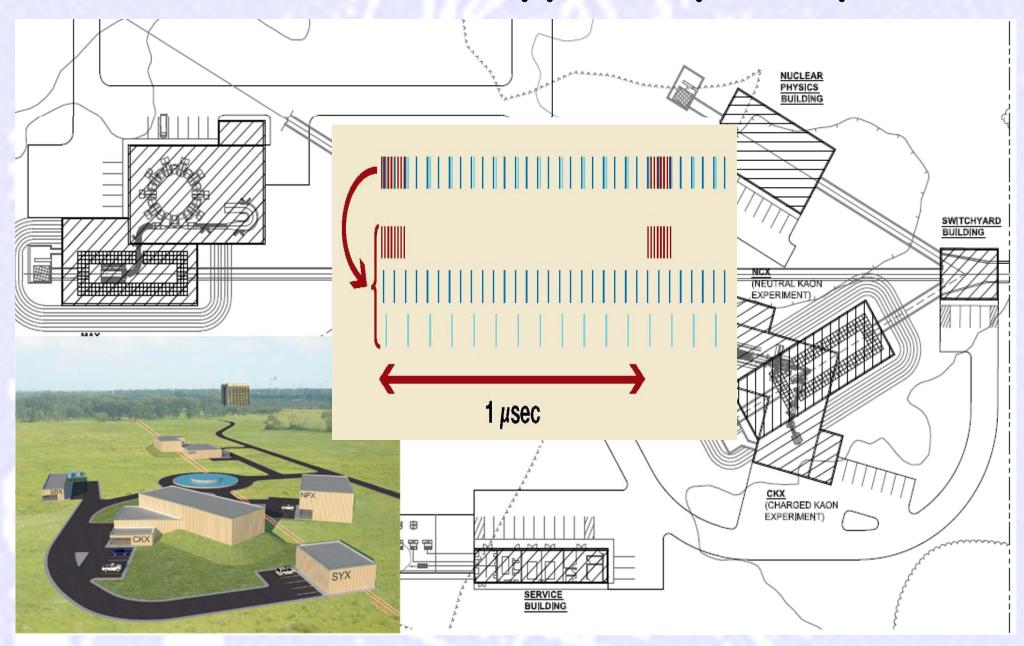
This Science has attracted Competition: The Proton Source Landscape This Decade...

- Pulsed machines driving neutrino horns: SPS (0.5 MW), Main Injector (0.3 MW now, 0.7 MW for Nova), JPARC (plan for 1.7 MW)
- Cyclotrons and synchrotrons driving muon programs PSI (1.3 MW, 600 MeV), JPARC RCS (0.1-0.3 MW)
- Synchrotrons driving kaon physics programs.
 SPS (0.015 MW), JPARC (goal of >0.1 MW), Tevatron (0.1 MW)
- Linear machines driving nuclear and neutron programs: SNS, LANL, FRIB....not providing CW light-nuclei beams.

The High Duty Factor Proton Source Landscape This Decade...

* Beam power x Duty Factor

Project-X Rare Processes Research Campus



Project-X Accelerator Functional Requirements

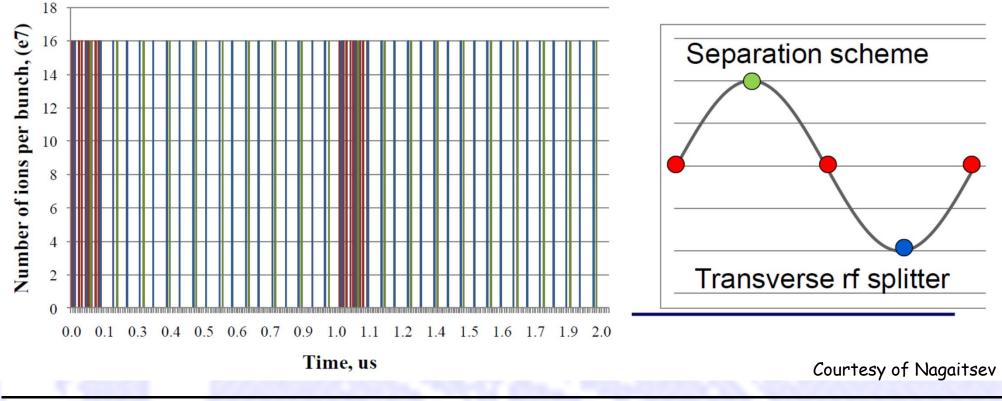
CW Linac

Particle Type	H	
Beam Kinetic Energy	3.0	GeV
Average Beam Current	1.	mA
Linac pulse rate	CW	
Beam Power	3000	kW
Beam Power to 3 GeV program	2870	k₩
RCS/Pulsed Linac		
Particle Type	protons/H ⁻	
Beam Kinetic Energy	8.0	GeV
Pulse rate	10	Hz
Pulse Width	0.002/4.3	^{msec} / simultaneous
Cycles to MI	6	
Particles per cycle to Recycler	2.6×10 ¹³	
Beam Power to 8 GeV program	190	kW
Main Injector/Recycler	State & Yours	
Beam Kinetic Energy (maximum)	120	GeV
Cycle time	1.3	sec
Particles per cycle	1.6×10 ¹⁴	
Beam Power at 120 GeV	2200	kW

Near Term R&D: Demonstrate Wide Band Chopper Capability

Chopping and splitting for 3-GeV experiments

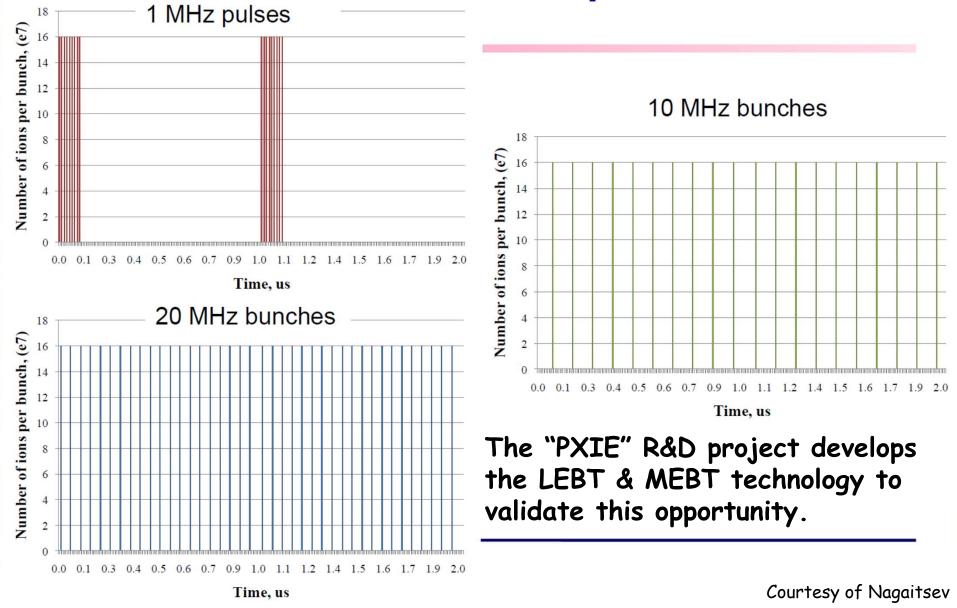
<u>1 μsec period at 3 GeV</u>

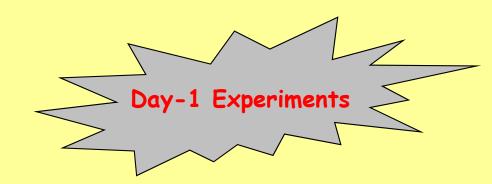

roject X

 Muon pulses (16e7) 81.25 MHz, 100 nsec at 1 MHz
 700 kW

 Kaon pulses (16e7) 20.3 MHz
 1540 kW

 Nuclear pulses (16e7) 10.15 MHz
 770 kW


Ion source and RFQ operate at 4.2 mA 75% of bunches are chopped at 2.5 MeV after RFQ


Beam after splitter

18

Neutrino Physics:

- Mass Hierarchy
- CP violation

- > Precision measurement of the θ_{23} (atmospheric mixing). Maximal??
- > Anomalous interactions, e.g. $v_{\mu} \rightarrow v_{\tau}$ probed with target emulsions (Madrid Neutrino NSI Workshop, Dec 2009)

Search for sterile neutrinos, CP & CPT violating effects in next generation v_e, v_e→X experiments....x3 beam power @ 120 GeV, x10-x20 power @ 8 GeV.

Next generation precision cross section measurements.

Muon Physics:

∕>Day-1 Experiment

Next generation muon-to-electron conversion experiment, new techniques for higher sensitivity and/or other nuclei.

- \succ Next generation (g-2)_{\mu} if motivated by next round, theory, LHC. New techniques proposed to JPARC that are beam-power hungry...
- ≻µ edm
- ≽µ→3e
- $\succ \mu^+ e^- \rightarrow \mu^- e^+$
- $\succ \mu^{-}A \rightarrow \mu^{+}A'; \mu^{-}A \rightarrow e^{+}A'; \mu^{-}e^{-}(A) \rightarrow e^{-}e^{-}(A)$

> Systematic study of radiative muon capture on nuclei.

Possible Day-1 Experiments

Kaon Physics:

 $\succ K^+ \rightarrow \pi^+ v \overline{v}$: >1000 events, Precision rate and form factor. $ightarrow K_{L} \rightarrow \pi^{0} v \overline{v}$: 1000 events, enabled by high flux & precision TOF. $> K^+ \rightarrow \pi^0 \mu^+ \nu$: Measurement of T-violating muon polarization. $\succ K^+ \rightarrow (\pi,\mu)^+ v_{\star}$: Search for anomalous heavy neutrinos. $ightarrow K^{0} \rightarrow \pi^{0}e^{+}e^{-}$: <10% measurement of CP violating amplitude. $> K^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}$: <10% measurement of CP violating amplitude. $\succ K^{\circ} \rightarrow X$: Precision study of a pure K⁰ interferometer: Reaching out to the Plank scale ($\Delta m_{\kappa}/m_{\kappa} \sim 1/m_{P}$) $> K^{\circ}, K^{+} \rightarrow LFV$: Next generation Lepton Flavor Violation experiments ...and more

-Possible Day-1 Experiment

Nuclear Enabled Particle Physics:

Production of Ra, Rd, Fr isotopes for nuclear edm experiments that are uniquely sensitive to Quark-Chromo and electron EDM's. Production of Very-cold and Ultra-cold neutrons for EDM and n-nbar.

Baryon Physics:

> pp → $\overline{\Sigma^+}K^0p^+$; $\Sigma^+ \rightarrow p^+\mu^+\mu^-$ (HyperCP anomaly, and other rare Σ^+ decays) > pp → K⁺ Λ^0p^+ ; Λ^0 ultra rare decays > neutron - antineutron oscillations > $\Lambda^0 \leftrightarrow \overline{\Lambda^0}$ oscillations (Project-X operates below anti-baryon threshold) > neutron EDMs

Beam Power Profile for the Fermilab Research Program

490-700 kW 10 kW 15 kW	Campus 700-1200 kW 10 kW 15 kW	700-1200 kW 10 kW 15 kW	1900-2300 kW 85 kW	1900-2300 kW 3000 kW
			85 kW	3000 kW
15 kW	15 kW	15 L/M/		
		IS NW	85 kW	1000 kW
	50 kW	1000 kW	1000 kW	1000 kW
50 kW (30% df from MI)	75 kW (MI)	1100 kW	1100 kW	1100 kW
none	300 kW	300 kW	300 kW	300 kW
none	300 kW	300 kW	300 kW	300 kW
none	300 kW	300 kW	300 kW	300 kW
4	8	8	8	8
625 kW	2000 kW	3975 kW	5290 kW	9100 kW
	(30% df from WI) none none none 4	(30% df from MI) none(MI) 300 kWnone300 kWnone300 kW48	(30% df from WI) (MI) none 300 kW 300 kW A 8 8	30% df from MI) (MI) 300 kW 300 kW none 300 kW 300 kW 300 kW none 300 kW 300 kW 300 kW none 300 kW 300 kW 300 kW 4 8 8 8 625 kW 2000 kW 3975 kW 5290 kW

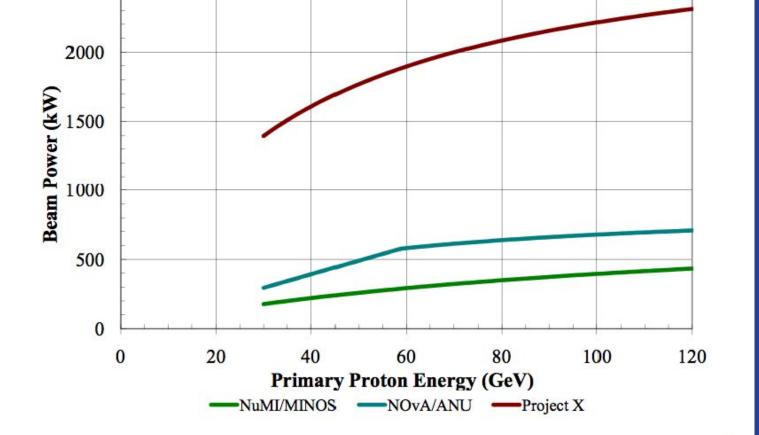
Main Injector Primary Proton Beam Power

(R. Zwaska)

Impact of Project X on LBNE With Project X:

2500

BROOKHAVEN NATIONAL LABORATORY

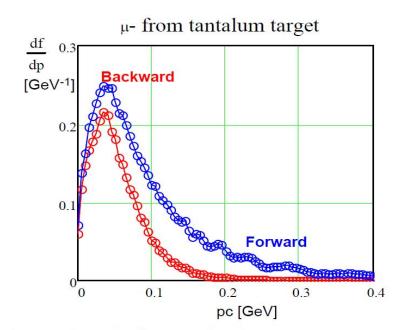

Mary Bishai (LBNE collaboration) Brookhaven National Laboratory

Intro

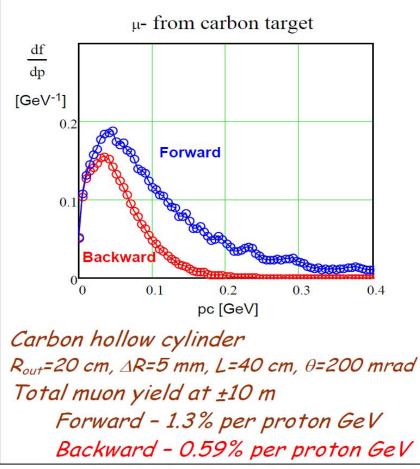
LBNE Beams

LBNE Detectors

Beam Physics with Project X


5/15

February 2012


Muon Yields with High Power Compact Targets...

Muon Yield from Cylindrical Target

V. Lebedev, AAC meeting, Dec 2011

Tantalum hollow cylinder R_{out}=20 cm, ΔR=5 mm, L=16 cm, θ=300 mrad Total muon yield at ±10 m Forward - 1.4% per proton GeV Backward - 0.73% per proton GeV

Yield per 1 GeV of proton energy: pc=3 GeV/ (E_{kin}=2.2 GeV),
 σ_x = σ_y = 1 mm - parallel beam, proton multiple scattering unaccounted
 Small difference between forward and backward muons for Pc<50 MeV
 For pc<120 MeV a weak dependence on E_{kin_prot} for E_{kin_prot} ∈[1, 8] GeV/c

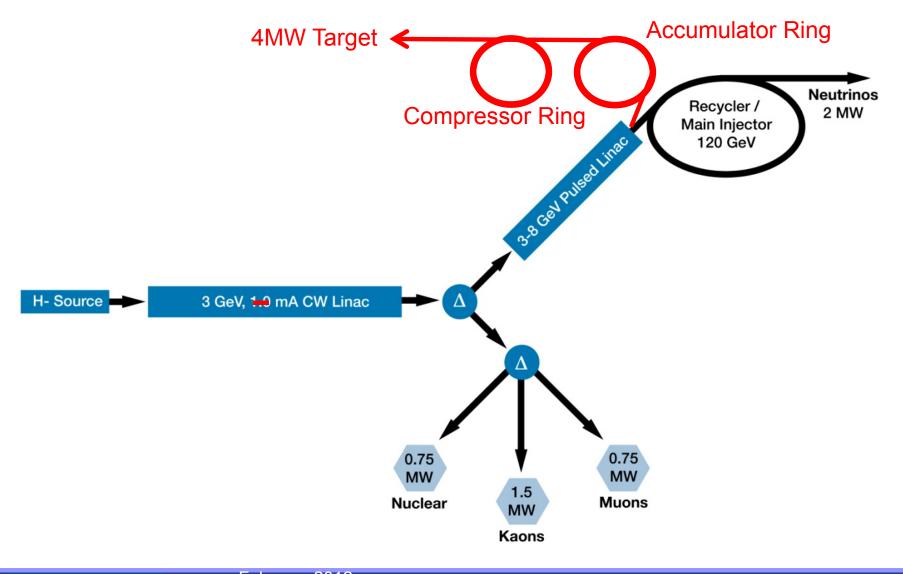
1 1

The Mega-Watt Jungle...

Apologies to Jurassic Park and Hitoshi Murayama , ICFA October 2011

A Few High Power Target Issues...

- Modelling of beam energy deposition
- Modelling of secondary particle production
- Modelling of target material response using FEA codes
- Target cooling or replacement
- Activation and radiation damage everywhere
- Thermal shock
- Target lifetime
- Particle capture, moderation and delivery
- Beam windows
- Target station design, inc. shielding, RH, licensing, etc
- Diagnostics in high radiation environments
- Demanding environmental and safety requirements

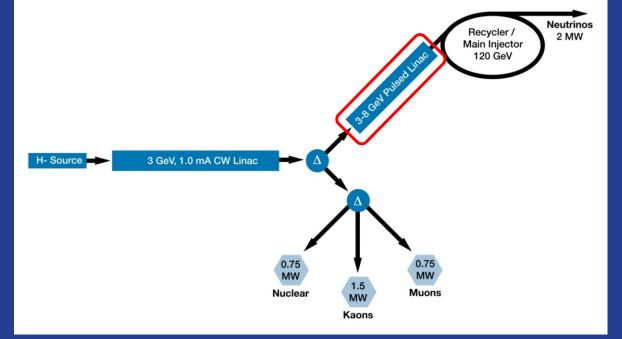

Courtesy Patrick Hurh and the UKHPT/STFC

Summary

- Project X is the driving force of the Intensity Frontier roadmap at Fermilab and a platform from which to reach toward the Muon Collider.
- The Project X research program deeply attacks the central question in particle physics today, the question of "naturalness" and physics at the TeV scale and beyond.
- We need you. The success of the Fermilab roadmap depends critically on R&D toward next generation high power targetry and beamlines...these are the foundation of experiments in the US and world-wide program for decades to come.

MAP Layout based upon Project X

February 2012 R. Tschirhart - RESMM12


🛟 Fermilab

Project X Upgrade Proton Driver - 3 Pulsed Linac 1.3GHz SRF 3-8 GeV 10% 5% duty factor at 10Hz 15Hz

More RF power

Upgrade of couplers

More cryo capicity

February 2012 R. Tschirhart - RESMM12

🛟 Fermilab

Pursuing next-generation neutrino parameters is beam-power hungry: Project-X Triples LBNE (Power x Mass) Reach

100 kton WC + 17 kton LAr

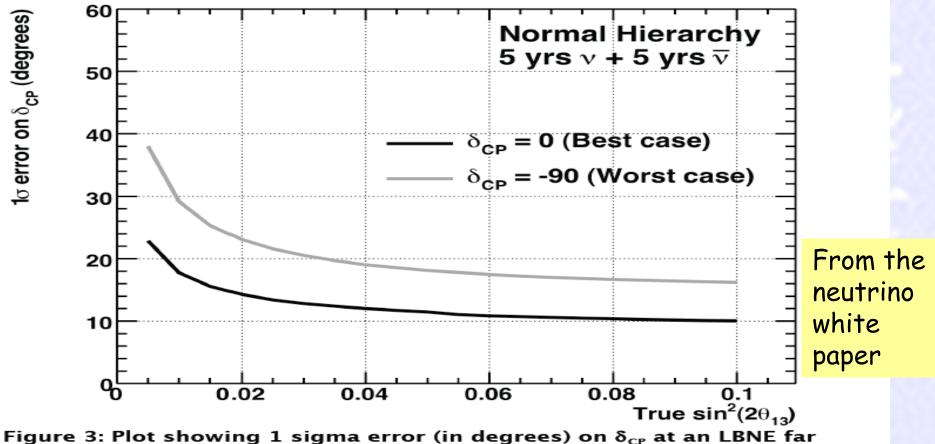


Figure 3: Plot showing 1 sigma error (in degrees) on δ_{CP} at an LBNE far detector complex composed of a 100-kT water Cherenkov detector and a 17-kT liquid argon detector. The exposure assumes a 700-kW proton beam. [Plot courtesy of Lisa Whitehead, Brookhaven National Laboratory]

Future Detector 2 .

Short-Baseline Neutrino Workshop

12-14 Max 2011 Fermilab

Neutrino Source

Local Organizing Committee: Zelimir Djurcic (ANL) Bonnie Fleming (Yale) Bill Louis (LANL) Geoff Mills (LANL) Zarko Pavlovic (LANL) Chris Polly (FNAL) Richard Van de Water (LANL) Sam Zeller (FNAL)

Scientific Advisory Committee: Gerry Garvey (LANL) Carlo Giunti (Torino) Terry Goldman (LANL) Young-Kee Kim (FNAL) Bill Marciano (BNL) Mark Messier (Indiana) Jorge Morfin (FNAL) Mike Shaevitz (Columbia) Bob Svoboda (UC Davis) Stan Wojcicki (Stanford)

Supported by Fermi National Accelerator Laboratory and Los Alamos National Labo

The workshop will cover recent shortbaseline neutrino results, theoretical interpretations, future neutrino facilities, and future short baseline neutrino experiments. The goal of the workshop will be to discuss future facilities and experiments that can be built at Fermilab and elsewhere to explore short-baseline neutrino physics (including neutrino oscillations, CP violation, sterile neutrinos, axion searches, cross sections, etc.).

https://indico.fnal.gov/event/sbnw2011

Project-X Opportunities

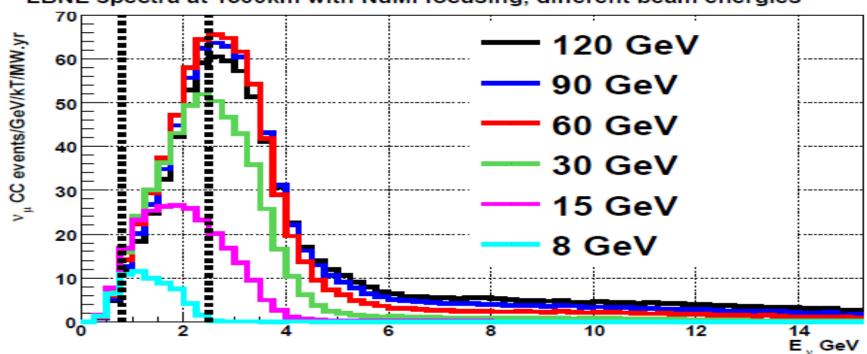
 Follow leads on 3+N sterile neutrinos:

190 kW 8-GeV beam power 1000 kW class 3-GeV DIF driver

Higher 8-GeV beam power??

- Beam dump exotics search
- Precision neutrino cross sections
- Flux measurements with H/D₂

SBNW11 Summary : R. Van de Water (LANL)

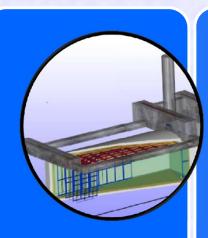

Tuning the LBNE spectrum

L0000 $\sin^2 2\theta_{13} = 0, \delta_{cp} = n/a$ Probability 09 $\sin^{2} 2\theta_{13} = 0.04, \delta_{cp} = -\pi/2$ CC evts/GeV/100kT/10 8000 0.08 $\sin^2 2\theta_{13} = 0.04, \delta_{cp} = 0$ 7000 0.07 v ppearance $\sin^{2}2\theta_{13} = 0.04, \delta_{cp} = \pi/2$ 6000 0.06 5000 0.05 4000 0.04 ^{_1} 3000 0.03 2000 0.02 1000 0.01 E , (GeV

 v_{μ} CC spectrum at 1300km, $\Delta m_{31}^2 = 2.5e-03 \text{ eV}^2$

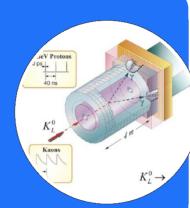
Mary Bishai, Neutrino Working Group meeting October 24th, 2011

- A task force (K. Gollwitzer) to develop a path from Project-X to a • Neutrino-Factory/Muon-Collider has recently reported a concept to raise available 8 GeV beam power from 190kW to 4000kW! This path re-uses 75% of the Project-X facility.
- The joint reach of simultaneous 2MW@60 GeV and 4MW@8 GeV is very interesting. This idea has been long been considered (D Michael) and more recently by Mary Bishai and Jeff Nelson.

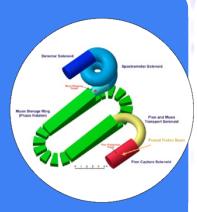

Mary Bishai, Neutrino Working Group meeting October 24th, 2011

LBNE spectra at 1300km with NuMI focusing, different beam energies

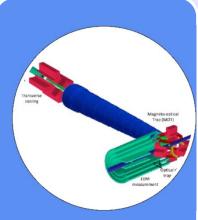
Wide-band beam to cover BOTH oscillation maxima for best CP Impact of Project X on Violation/Mass Hierarchy sensitivity LBNE v, CC spectrum at 1300km, ∆ m²₃₁ = 2.5e-03 eV² 510000F LBNE spectra at 1300km with NuMI focusing, different beam energies Mary Bishai sin² 20,3 =0,8 ,... = n/a events/GeV/kT/MW.yr - 120 GeV (LBNE 0.09sin 2 20 = 0.04, 5 =- π/2 60 collaboration) 00kT/10 8000 - 90 GeV sin 2 20 = 0.04,8 = 0 50 E Brookhaven 7000 0.07In 29 ... = 0.04,8 ... = 17/2 60 GeV wts/GeV/1 National 6000 0.06 40 E . 30 GeV Laboratory 5000 0.05 30 E 8 4000 - 15 GeV 8 0.04- 3000 0.03 20 8 GeV Intro 2000E 10 1000 0.01 LBNE Beams 12 14 E (GeV) E GeV LBNE CP Asymmetry (vacuum) Matter Asymmetry (no CPV) Detectors CP Asymmetry in vacuum, $\delta_{cp} = 3\pi/2$ Matter Asymmetry in the Earth, $\delta_{co} = 0$, normal hierarchy at 1300km Beam Physics 0.9 0.8 (d+d)/(d-d) (d+d)/(d-d) with Project X 0.9 2 nd Maximum 0.8 1 st Maximum -Summary 0.6 0.5 0. 0. 0. 0.3 0.3 2nd Maximum 0.2 0.2 st Maximum 0. 0.1 ^{1σ¹}sin² 2θ₁₃ 10³ 10² 10¹ 10 10³ 10² sin² 20₁₃


Mary Bishai, Neutrino Working Group meeting October 24th, 2011

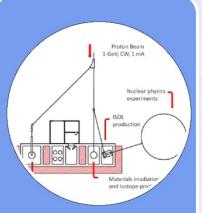
Project X: new experiments


Neutrinos

- Matterantimatter asymmetry
- Neutrino mass spectrum
- Neutrinoantineutrino differences
- Anomalous interactions
- Proton decay
- SuperNova bursts


Kaons

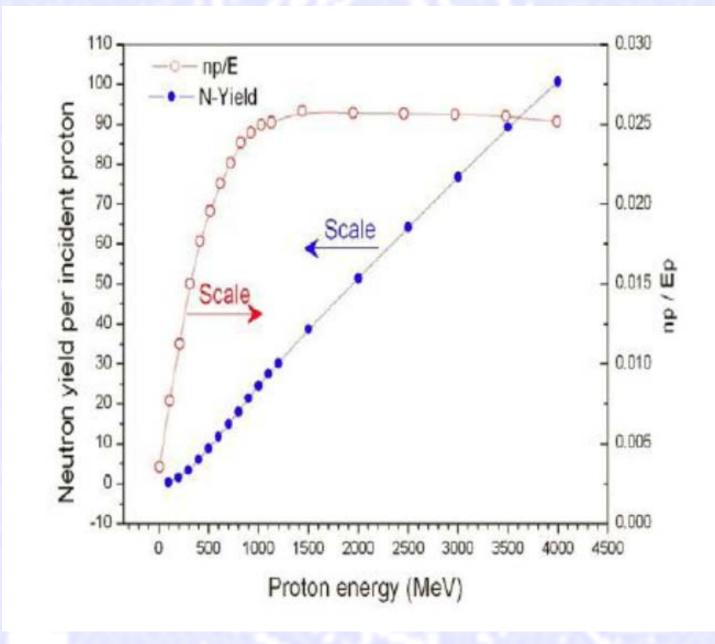
- Physics beyond the Standard Model
- Elucidation of LHC discoveries
- Two to three orders of magnitude increase in sensitivity


Muons

- Oscillation in charged leptons
- Physics beyond the Standard Model
- Elucidation of LHC physics
- Sensitive to energy/mass scales three orders of magnitude beyond LHC

Nuclei

- New generation of symmetry-test experiments
- Electric Dipole Moments
- Three or more orders of magnitude increase in Francium, Radium, Actinium isotopes



Energy Applications

- Transmutation experiments with nuclear waste
- Spallation target configurations
- Materials test under high irradiation
- Neutron fluxes relevant to ADS

February 2012

Optimum Energy for ADS R&D

High Duty-Factor Proton Beams Why is this important to Rare Processes?

- Experiments that reconstruct an "event" to a particular time from sub-detector elements are intrinsically vulnerable to making mistakes at high instantaneous intensity (I). The probability of making a mistake is proportional to $I^2x\delta t$, where δt is the event resolving time.
- Searching for rare processes requires high intensity.
- Controlling backgrounds means minimizing the instantaneous rate and maximizing the time resolution performance of the experiment.
- This is a common problem for Run-II, LHC, Mu2e, High-School class reunions, etc.

Kaon Yields at Constant Beam Power

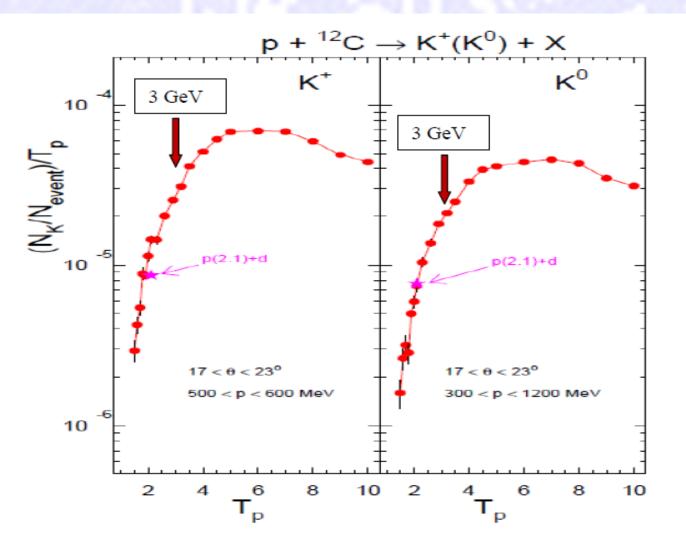
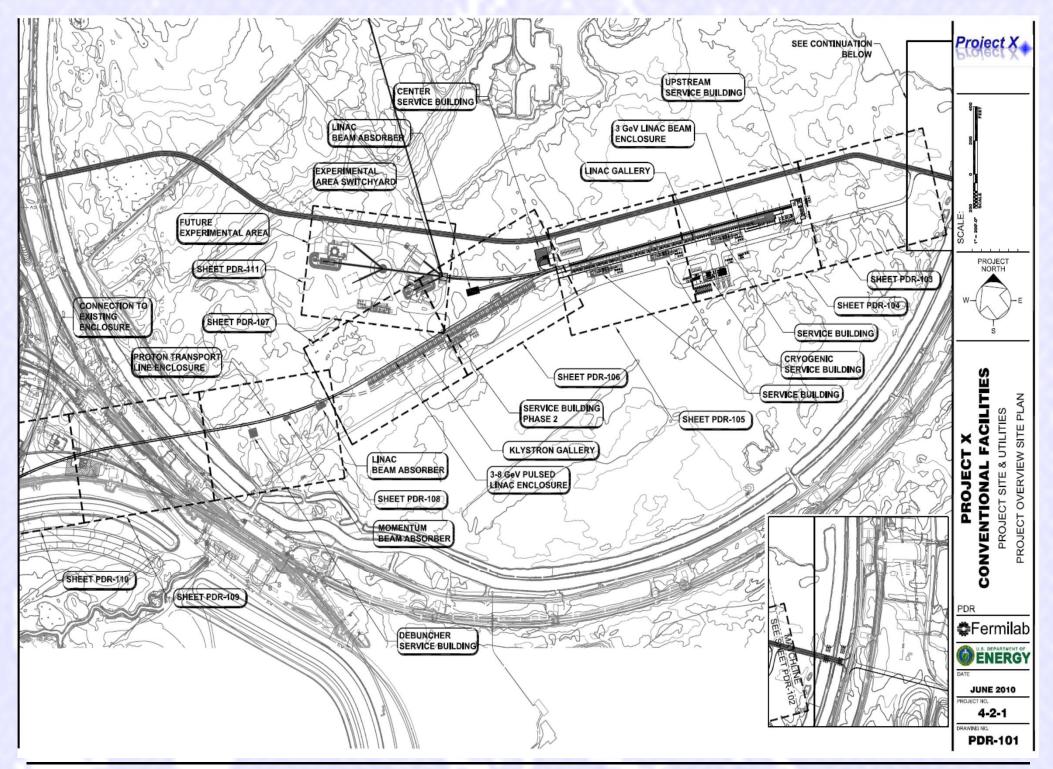



Figure 2: The estimated (LAQGSM/MARS15) kaon yield at constant beam power (yield/ T_p) for experimentally optimal angular and energy regions as a function of T_p (GeV).

3 - 8 GeV acceleration

Pulsed linac based on the ILC technology
✓1.3 GHz, 25 MV/m gradient, ≤5% duty cycle
✓ considering 8-30 ms pulse length
✓~250 cavities (28 ILC-type cryomodules) needed.
✓ Simple FODO lattice
✓1 Klystron per 2 CM's

February 2012 Tschirhart - RESMM12 D

ILC

F

Rings' Concepts & Concerns

4MW Target 🗲

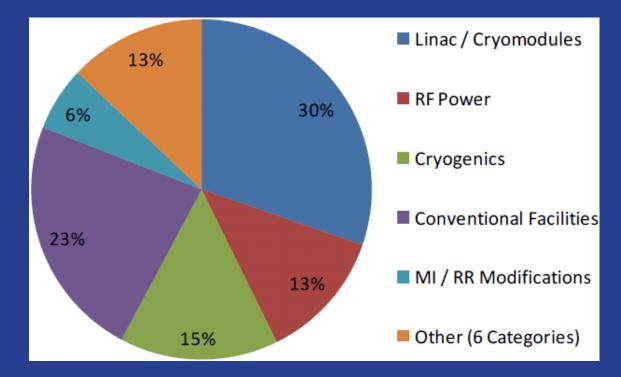
Compressor Ring

- Simple numbers to start
 - T_{rev} ~ 800 ns
 - $f_{rf} \sim 10 \text{ MHz}$
 - h = 8
 - Injection scheme
 - ~50 ns beam ON followed by ~50 ns NO beam
- Evolution of design
 - Increase of circumference (~300m)
 - . Space for RF and Injection/Extraction components
 - . Several designs and will settle on one
- Concerns
 - Injection: Stripping
 - . Instabilities
 - Beam size in Compressor Ring after bunch rotation

February 2012 R. Tschirhart - RESMM12

Accumulator Ring

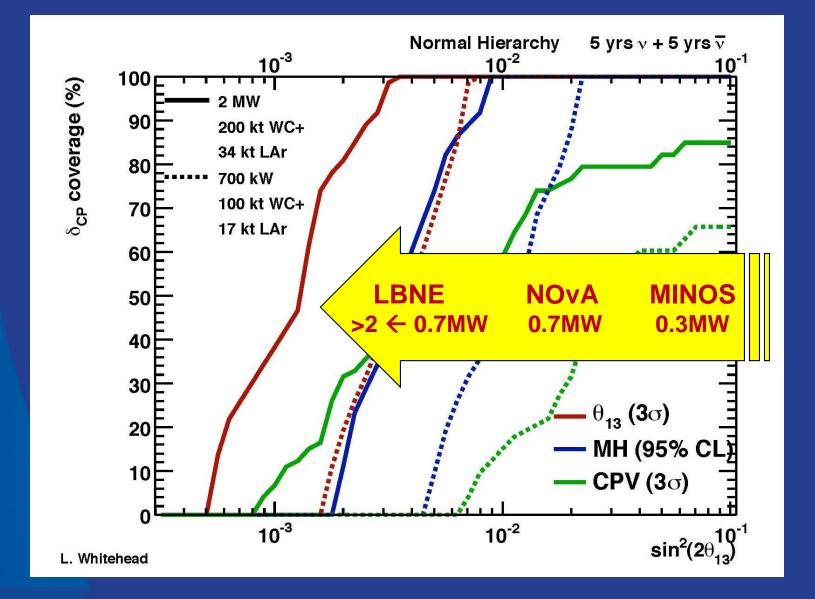
Ring Concern: Injection/Stripping


- Stationary foil will not survive
- Solutions are being investigated by other groups; will have to keep informed of progress
 - Will need to build upon Project X R&D for stripping at 8 GeV in to Recycler/Main Injector
 - Rotating foils
 - . Laser
- Should not forget about un-stripped beam (~1%) needs to be "absorbed"

February 2012 R. Tschirhart - RESMM12

Project X Upgrade Proton Driver - 4

- Conventional facilities
 - More water cooling
 - Building space
 - More cryo capacity
 - More Klystrons



An upgrade re-uses >75% of RDR cost

February 2012 R. Tschirhart - RESMM12

Evolution of Neutrino Sensitivities

February 2012 R. Tschirhart - RESMM12

