Shielded RF Lattice for the Muon Front End

Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

Shielded RF Lattice

- I wanted to remind folks of the work that has been done on this lattice
 - Last major update at NuFact ~ 6 months ago
 - Worth reminding
- Summarise more recent work that I have done since then
 - Add a few new things since christmas or so
- Quite a lot of slides apologies
 - I've tried to break it up a bit

Part 1 - Shielded Lattice Baseline Thoughts

Chris Rogers,

Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

RF Problem

- Neutrino Factory baseline front end has RF in 2 T B-fields
 - Experiment indicates this will not work
 - Many caveats
 - Available RF voltage may be significantly reduced
 - Major technical risk
- Several schemes to overcome this
 - Fancy RF cavities (new materials, liquid N₂ cooling...)
 - Magnetic Insulation
 - High pressure gas to insulate RF cavities
- These are multi-million \$, >5 year R&D plans that may not work
 - Probably necessary for Muon Collider
- For a Neutrino Factory, can we do something simpler?
 - Adapt lattices to keep RF cavities in low fields "Shielded RF"
- For this talk I concentrate on the cooling section
 - Stronger B-fields, higher RF voltages, more constraints on lattice

Shielded RF

- Increase cell length to remove RF from fringe fields
 - Add shielding using iron or bucking coils
- Look at cooling section
 - This is where the RF is most limited
 - This is where optics are most demanding
- How well can we cool in this shielded scenario?
- How well can we optimise the cooling lattice?
- Try to keep RF cavities in < 0.1 T fields
- Liquid Hydrogen absorbers

Lattice quality

- Two criteria for lattice quality
- β function => how tightly focussed the beam is at the absorber
 - Determines how much cooling we get
 - Require good β function over a large momentum range
- Acceptance => the beam emittance that makes it through the lattice
 - Determines how much beam we get through
- Scale as ~ <B²_z>/p

β vs Cell Length

- We want tight focussing on the absorbers for good cooling performance
 - Tight focussing => more cooling
 - Aim for $\beta < 1500$ mm over ~ 150 300 MeV/c (liquid Hydrogen)
- As cell length gets longer dβ/dp gets worse
 - Making it hard to contain a beam with a large momentum spread
- Keep cell as short as possible
 - To keep B_z off RF, need to reduce solenoid fringe field

Dynamic Aperture vs Radius

- Reducing radius of coil reduces lattice acceptance
 - Aim for acceptances >~ 100 mm
 - Naively "expect" that reducing coil radius decreases acceptance
 - "Particles travel through region of poor field quality near the coils"
- In solenoid, optics is uniquely defined by on-axis field
 - So any attempt to curtail the fields is like reducing the coil radius
 - What does "poor field quality" really mean?

Non-Linear Terms

- Non-linear terms => $x_{out} = a_{ij} x_{in}^{i} p_{in}^{j}$
- 2nd order terms have i+j=2
 - Purely chromatic, can be ignored
- 3rd order terms have i+j=3
 - Increase by order of magnitude in short fringe field
 - In theory go as d²B_z/dz²
- For very short fringe fields 3rd order terms become large
 - d²B_z/dz² becomes large
 - e.g. consider tanh model for B_z(r=0)
 - $B_{z} = \tanh[(z-z_{0})/\lambda] + \tanh[(z-z_{0})/\lambda]$
- Introducing bucking coils etc is equivalent to reducing coil radius
 - Not helpful

Coil Length

- Can we make progress by tweaking coil length?
 - Long coil needs lower B_z to keep <B_z²> constant => more space
 - But field extent is longer => less space
- These effects ~cancel
 - Dashed line = field free length
 - B_z < 0.5 T (assume shielding for rest)
 - Per 2.5 m half-cell
 - Full line = acceptance at 200 MeV
- Are there practical reasons that influence coil length?
 - Longer => Lower B_z
 - Longer => Lower current densities
 - Longer => More hardware required

Lattice Choice

- In light of this what lattice?
- Try 4 m, 6 m or 8 m cell
 - Longer cells have worse optics
 - Longer cells have better RF packing fraction
 - 1/8, 1/3, 1/2 respectively
- Try long coil or short coil

Long Coil Versus Short Coil

- Compare long con with short c
 - 3 m cell, 30° RF phase
 - Count number of muons in accelerator acceptance
 - 30 mm transverse, 100 300 MeV/c momentum bite
 - Short coil does a bit better
 - ~52% compared to ~42%
 - Probably means my "long coil" is too low radius
 - Perhaps initial mismatch is a problem

Cell Length

- Cell length optimisation
 - Simulated using long coil option
 - Race between RF packing fraction and β function
 - Higher RF packing => quicker cooling
 - Shorter lattice => lower β function (better equilibrium emittance)
- 3m lattice is optimal
 - Worry about initial beam loss
 - Nb low statistics
 - Get ~ 40 % with long coil (a bit more optimisation is possible)
- Case for beta tapering?

Lower B-Field Lattices

- Cooling channels with RF in high magnetic fields is tough
 - High, unknown technical risk for the Neutrino Factory
 - Solutions with >5 year, multi-million \$ R&D programmes which may not work (impatient!)
- It is possible to build a cooling channel that keeps RF cavities away from strong fields
 - Reduced cooling performance compared with baseline
 - 3 m lattice preferred
 - It's all a bit marginal it can be built, but worry about reality
- Bucked coil lattice is equivalent to reducing coil radius
 - Spherical aberrations drastically reduce transverse acceptance
 - Not much progress to be made here

Part 2 - Simulation Details

Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

Coils and Shielding

- Assume iron shielding on coils
 - Makes handling magnets harder
 - e.g. 14 tonnes Fe (long coil)
 - Lower currents required on coils
 - Reduces fringe field on RF
 - Shield tunnel from intense fields
 - Stray iron does not affect beam
 - Stray fields do not affect hardware
 - Stray fields do not affect personnel
- Compare long coil or short coil
- Long coil may be preferable
 - Less shielding
 - Lower current densities
 - Normal conducting possible?
 - More conductor

Shielded vs Unshielded Fields

- Shielding introduces slightly higher field 2nd derivative (blue)
- Reduces absolute field value (black) noticeably at fringes

Shielded vs Unshielded Optics

- β at absorber unaffected by presence of shielding, coil length
 - $\langle B_z^2 \rangle$ = same for all lattices
- Acceptance is slightly affected by short vs long coil
 - Can improve short coil acceptance by increasing coil radius
 - Probably of order accuracy of acceptance calculation routines
- Acceptance is ~unaffected by this weak shielding of fringe field tails

Cooling Performance

- Transmission into momentum bite 100-300 MeV/c and acceptance of 30 mm
- Shielding gets increase of ~ 52% (better than no-shielding!)
- No-shielding gets increase of ~ 45%

Transverse Matching

- Try using beam directly from simulation
 - p63a lattice http://www.astec.ac.uk/groups/beams/users/rogers/Front_End/Bea ms_and_Lattices/FrontEnd_FS2A_ICOOL_p63a-2010-02-02/
 - Linear matching using derivatives to generate transfer maps
 - Vary last coil of phase rotation and first coils of cooling
 - Not quite perfect but beam is pretty rough
 - Then pass through an optimiser

Bz

Apertures

- Change in muon rate vs aperture determines
 - How much space we can get for magnets
 - Thickness of windows

Windows

- Windows knock the improvement in rate quite a bit
 - I use ~minimum thicknesses from MICE lattice
 - Rather optimistic
 - Bigger apertures => thicker windows
 - Still quite damaging to muon rate

Part 3 - Higher Momentum Optimisation

Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

Improved Acceptance

- Momentum acceptance goes proportional to p
 - i.e. $\beta(\delta p/p)$ is constant as p increases
- Transverse acceptance gets larger at higher momenta (~p?)
 - Geometric emittance effect
- Overall expect better transmission at higher momenta
 - And/or possible to move to smaller β function
- Increase RF phase "adiabatic taper"
- But cooling length goes as δp/p

Naive simulation

- Give my input beam a momentum kick
 - How does the n(z) go?
 - Longitudinal mismatch!

Introduce "acceleration cell"

Extra RF cavity!

Higher Momentum Beam

- Try accelerating the beam for real
- Bring magnetic field up "adiabatically"
 - Trying to taper β function a bit
 - Matched β starts at ~1.5 m and ends at ~1.1 m
 - Slight β beating, probably related to momentum bouncing around

Emittances etc

- Some longitudinal mismatch
 - Bit of longitudinal emittance growth
- Transverse looks ok
 - Note in this case I've assumed a transverse matching
 - Massaged my beam to give this match

Higher Momentum Beam

- Fairly large transmission losses
 - >~ 50%
- Most of the remaining beam is inside the 30 mm acceptance
- Getting increase in rate of ~ 70 %
 - But with more hardware
 - Performance quite similar to baseline
- If I stop at point A I use roughly the same amount of hardware as the baseline (RF packing fraction ~ 1/2 that of the baseline)
 - And lose a few muons
- I can recover baseline performance if I go to Point B
 - But those last few muons are expensive!

Part 4 - Hardware Inventory

Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

RF Cavities

	Baseline	Long Coil	Accelerated 1	Accelerated 2
RF Cavities				
Number	~80	~120	~210	~210
Peak Field	15.500	19.000	17.5-12.5*	22.5-17.5**
Length	50.000	50.000	50.000	50.000
Frequency	201.250	201.250	201.250	201.250
Phase	40.000	30.000	20-40*	20-40*

* RF ramps down linearly from 17.5 to 12.5 MV/m in 10 acceleration cells and from 20 to 40 degrees phase. Subsequently RF operates at 17.5 MV/m and 40 degree phase. Note I am going to "Point B" here.

** RF ramps down linearly from 22.5 to 17.5 MV/m in 10 acceleration cells and from 20 to 40 degrees phase. Subsequently RF operates at 22.5 MV/m and 40 degree phase. Note I am going to "Point B" here.

	Baseline	Long Coil	Accelerated 1	Accelerated 2
Coils				
Number	~80	~60	~100	~100
Peak Field	2.783	1.633	1.295-2.312**	1.295-2.312**
Superconductor Volume	0.060	0.283	0.283	0.283
Current Density	106.667	17.660	14.0 to 25.0**	14.0 to 25.0**
Inner Radius	0.350	0.400	0.400	0.400
Radial Thickness	0.150	0.100	0.100	0.100
Length	0.150	1.000	1.000	1.000
Iron shield mass	N/A	14 T	N/A	N/A

Coils

 ** Coil peak field ramps linearly from 1.3 to 2.3 T in 10 acceleration cells. Subsequently peak fields are all 2.3 T

	Baseline	Long Coil	Accelerated 1	Accelerated 2
Absorbers				
Number	~75	~60	~100	~100
Absorber Thickness	1.000	25.000	25.000	25.000
Absorber Material	LiH	IH2	IH2	IH2
Window Thickness	0.025	0.300	0.000	0.000
Window Material	Be	Al	AI	Al

Part 5 - Advantages, Disadvantages

Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

Heat Load and Radiation

- ~ 40 W/m beam power is lost into the walls in this lattice
 - O(Similar) for baseline front end
 - + radiation from RF cavities?
- Total heat being dumped in superconductors may be significant
 - Can the baseline magnets be shielded? Not much room!
- What about activation?
 - Leptons, probably ok
- Note that long coil option can be built with more relaxed < 30 A/mm² current densities
 - May get worse if a bucking coil is used for shielding
 - May get better if iron is used for shielding

Continuous solenoid

- Continous solenoid scares me
 - I guess NF front end would be >> longest solenoid in the world
- What happens if quench protection system (or something) fails catastrophically?
 - cf LHC
 - Do we destroy entire front end and target solenoid?
- Having some 'fire breaks' in the magnetic field might be a good thing

Vacuum, Diagnostics

- Need to look at services
 - Vacuum system
 - Diagnostics
 - Needs space!

Magnet Shielding

- We will probably want to shield all the magnets
 - Stray iron, physicists, etc, outside the magnets can not steer the beam
 - Equipment in the same tunnel is not bathed in moderate magnetic field
 - Can lower the stored energy in the magnet maybe
 - Stray iron won't move around the hall when the magnets are switched on
 - Physicists' credit cards, etc, less likely to get wiped

Absorbers

- Liquid Hydrogen absorber may be challenging
 - Windows
 - Fragile
 - Effect of RF cavities?
 - Safety issue
- Some issues need to be addressed for LiH absorber
 - Cooling
 - Heat load from muons
 - Heat load from RF
 - Some safety issues

Phase Rotation

- I have not touched the phase rotation part of the lattice
- Some RF cavities here have ~ high peak fields and sit in strong magnetic fields
- I may be able to do better by capturing at a higher momentum
 - Rather than having this rather aggressive section of acceleration
- I would like to try to improve the longitudinal match
 - Initial study makes it look non-trivial

Part 6 - Conclusions

Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

Conclusions

- It is possible to compete with the baseline lattice using RF cavities that do not sit in strong magnetic fields
- But it looks moderately expensive
 - Either in muon rate
 - Or in RF cavity power supplies
 - (Or both)
- I would like to try to improve things back in the phase rotation system
- I would like to do a high stats study
- I need to look more closely into how much shielding I can really get away with
- The baseline design may be challenging to build
 - I think this long chain of coupled solenoids will bite us!

Blank Slide

Appendix - Code Comparison

Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory

G4MICE and ICOOL

- G4MICE
 - Written for MICE experiment
 - Based on G4 physics model
 - Tracking
 - Physics processes
 - Adds field maps for multipoles, solenoids, rf cavities
 - Plus some beam optics, mapping, analysis routines
 - Last time I did a detailed study of the tracking was ~ 3 years ago
 - Tracking by integration of Lorentz force with 4th order RK
- ICOOL
 - Written for simulation of cooling for Nu Factory and Mu Collider
 - Internal physics and tracking routines
 - Many different field models
 - "Well known" by community

Cell Model

- 3 m cell
 - Start with just magnets
 - Then add pillbox cavities
 - First look at rf field maps also
 - Not in most of my simulations, but will want it sometime
 - Ambition to add Parmila solenoid field maps
 - Then add IH2
 - Don't look at windows yet
 - But will want this also soon
 - Presume if we have IH2 that's "good enough"

ICOOL, magnetic field only

- x(step) x(1e-5) [mm], where step is step size in tracking
- BiLinear interpolation from a field map
 - Grid spacing 5 mm in r and 1 mm in z
- Disable dynamic step size allocation

- Use ICOOL field map in G4MICE
 - Compare tracking in ICOOL step=1e-5 m with G4MICE step=1e-4 m
 - Compare G4MICE field map with ICOOL

- Use G4MICE field map, all BiLinear interpolation
 - Tracking in ICOOL with ICOOL field map, step size 1e-5 m
 - Compare with tracking in G4MICE with G4MICE field map

- Introduce RF cavity
 - Analytical model for pill box
 - Compare ICOOL step size 1e-4 with G4MICE
 - x limited by magnetic field map size
 - 0.1 m step size still ok

- Now add liquid Hydrogen
 - Stochastics switched off!
 - Look at difference between G4MICE tracking and ICOOL

- Track through 20 cm of IH2 in field map
- Look at distributions before and after IH2
- 1e5 muons with initial p=230 MeV/c, no transverse

Cooling Lattice

- transverse amplitude < 30 mm
- momentum 130 < p < 330 MeV/c

Cooling performance

- momentum 130 < p < 330 MeV/c

Conclusions

- Simulation codes compare well
- For identical field models, tracking in G4MICE is convergent on tracking in ICOOL
- Physics processes in IH2 look similar
- Simulated cooling channel performance is similar for the two codes